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a b s t r a c t

In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Manage-
ment, current knowledge about tuna habitat preferences remains fragmented and heterogeneous,
because it relies mainly on regional or local studies that have used a variety of approaches making them
difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic
and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These
data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin,
bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used
to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that,
compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and
southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also
tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic
bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most
important variables determining fish habitat is also provided.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Tunas are oceanic top predators that play an important role in
marine ecosystems, account for nearly 20% of the value of marine
capture fisheries and contribute to meeting worldwide protein
requirements (FAO, 2011). The most economically important tuna
species are the temperate tunas albacore (Thunnus alalunga),
Atlantic bluefin tuna (Thunnus thynnus) and southern bluefin tuna
(Thunnus maccoyii) and the tropical tunas yellowfin tuna (Thunnus
albacares), bigeye tuna (Thunnus obesus) and skipjack tuna (Katsu-
wonus pelamis). Tunas migrate long distances during their life

cycle, and are widely distributed over the Atlantic, Indian and
Pacific Oceans. There is a single population for southern bluefin
tuna inhabiting the southern ocean, and typically one or two
populations of tropical and temperate tunas per ocean basin,
except for albacore that has 3 populations in the Atlantic
(Albaina et al., 2013). Tuna stocks are managed by 5 Tuna Regional
Fishery Management Organizations (TRFMOs) with the primary
objective of maintaining the productivity of each stock at its
maximum, although in recent years there have been efforts
towards the implementation of the Ecosystem Approach to Fish-
eries Management (EAFM).

Biotic and abiotic environmental variables affect tuna distribu-
tion and abundance (Lehodey et al., 1997; Ravier and Fromentin,
2004; Sund et al., 1981). Characterising tuna habitat is thus
essential to understand tuna spatio-temporal distribution and
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variability. This helps in interpretation of commercial fishery data,
such as time series of catch per unit effort (CPUE) used in stock
assessments to develop management advice (e.g. on Total Allow-
able Catches). Improved knowledge about tuna habitat and spatial
distribution also allows spatial and temporal management mea-
sures to be considered, e.g. for by-catch mitigation while main-
taining the profitability of fisheries (Hobday and Hartmann, 2006;
Hobday et al., 2011; Teo and Block, 2010).

Local habitat studies allow local problems, i.e. for specific fleets
and individual TRFMOs, to be addressed. In contrast, global habitat
studies covering the worldwide distribution of all tunas are
required to address global management issues and facilitate the
integration of EAFM in a consistent way across TRFMOs. For
instance, in the short term, global habitat studies are required to
determine optimum placements for large oceanic marine pro-
tected areas (Kaplan et al., 2013; Pala, 2013) based on hotspots of
biodiversity and/or abundance (Worm et al., 2005). In the longer
term, anthropogenic climate change effects will need to be
addressed, as part of the EAFM by TRFMOs and other governance
bodies (Maury et al., 2013). The provision of science to support
TRFMOs decisions is critical (Hobday et al., 2013) and collaborative
efforts are required between research disciplines and management
agencies to better monitor and understand the impacts of short-
term variability and longer-term climate change on oceanic fish-
eries (Salinger et al., 2013). Habitat models can be used to predict
future impacts of anthropogenic climate change on tuna distribu-
tion and abundance (Hobday, 2010; Lehodey et al., 2013), allowing
to develop alternative management strategies and adapt to future
socio economic scenarios (Bell et al., 2013).

In spite of its pivotal role in future implementations of the
EAFM within TRFMOs, current knowledge about tuna habitat
preferences remains fragmented and heterogeneous. The latest
generation of electronic tags has provided important new insights
(Bestley et al., 2009; Galuardi and Lutcavage, 2012; Schaefer and
Fuller, 2010; Schaefer et al., 2007). Although some large deploy-
ment efforts have characterised habitat preference and movement
patterns at relevant scales for management (e.g. Block et al., 2005;
Block et al., 2011; Hartog et al., 2011; Hazen et al., 2013; Hobday
and Hartmann, 2006), most tagging studies are local with short
deployment periods (e.g. Cosgrove et al., 2014), and provide
information about habitat characteristics only around deployment
areas (Hobday and Evans, 2013).

Additional efforts to study tuna habitat preferences have been
undertaken using fishery data, commonly assuming that CPUE is
proportional to fish abundance. Data on the position and time of
fishing events allow relationships between the presence and/or
abundance of tunas with environmental conditions to inform
habitat preferences using a range of modelling approaches. For
example empirical distributions of relative abundance binned
across environmental variables can inform habitat preferences
(Cheung et al., 2013; Sagarminaga and Arrizabalaga, 2010;
Zainuddin et al., 2006). Fromentin et al. (2014) characterised the
environmental niche of Atlantic bluefin tuna using a non-
parametric probabilistic environmental niche model (NPPEN,
Beaugrand et al., 2011), and Reygondeau et al. (2012) used a
hierarchical clustering method to identify different tuna and
billfish communities and describe their environmental conditions.
Several other authors used Generalised Linear Models (GLM,
Briand et al., 2011, Lan et al., 2013) and Generalised Additive
Models (GAMs, Lan et al., 2013; Maury et al., 2001; Mugo et al.,
2010; Sagarminaga and Arrizabalaga, 2010) to describe habitat
preferences of tunas. Finally, coupled biophysical models such as
SEAPODYM (Lehodey et al., 2008) or APECOSM (Maury, 2010) are
being used to describe the spatial dynamics of tunas and can
incorporate different habitat indices (e.g. spawning habitat and
feeding habitat) as well as submodels for the distribution of tuna

forage (Bertignac et al., 1998, Lehodey et al., 1998). Guisan and
Zimmermann (2000) suggest that there is no best model. Instead,
the choice of the model depends on the objective of the study as
well as the nature of the available data.

A range of environmental variables influence tuna spatial
distribution. Temperature and oxygen affect important biological
processes and thus determine the spatial distribution of tunas
(Barkley et al., 1978; Boyce et al., 2008; Brill, 1994; Stramma et al.,
2012). Salinity can influence large scale spatial distribution (e.g.
Fromentin et al., 2014; Maury et al., 2001; Reygondeau et al.,
2012). The mixed layer depth can limit the vertical distribution of
tuna and tuna like species (Bernal et al., 2009; Prince et al., 2010),
while the sea surface height anomaly (SSH) provides information
on the open-ocean physical habitat of pelagic species. For example,
positive and negative anomalies are associated with eddies and
gyres, describing convergent and divergent areas where tuna prey
may aggregate. Frontal systems around these gyres can also
potentially aggregate tunas (Arrizabalaga et al., 2008; Olson et
al., 1994; Podestá et al., 1993; Royer et al., 2004; Sagarminaga and
Arrizabalaga, 2014). In addition to the physical environment, the
distribution of prey is also one of the main drivers of the spatial
distribution and behaviour of tunas (Bertignac et al., 1998; Schick
and Lutcavage, 2009, Bernal et al. 2009). Chen et al., 2005 have
shown that higher primary production attracts tunas, but data on
tuna prey distribution and abundance is scarce and is mostly
available from models (Lehodey et al., 1998).

Habitat studies using fishery or survey data are often spatially
limited and focused on single species (e.g. Chen et al., 2005;
Sagarminaga and Arrizabalaga, 2010). Therefore, each study provides
a particular view of the habitat preference of a given species or stock,
commonly based on one variable (mostly sea surface temperature) or
a limited set of environmental variables. In this context, comparison
between different habitat preferences is difficult due to differences in
the datasets, methods, and studied areas, and this affects our ability
to determine which environmental variables are the most important
drivers of tuna distribution. In fact, there are few studies where the
habitat preferences of a group of species are analysed using similar
datasets and methods at broad spatial scales (but see Reygondeau et
al., 2012). Therefore, the aim of this study is, based on a common
dataset and consistent methodology, to provide a global comparative
perspective of habitat preferences for six commercially important
tuna species and to identify the most important variables driving
tuna spatial distribution.

2. Material and methods

2.1. Fishery data

The main commercial species of tuna, namely Atlantic bluefin,
southern bluefin, albacore, bigeye, yellowfin and skipjack are
considered. These large predators of the pelagic ecosystem are
highly migratory and their distribution covers most of the tropical
and temperate areas around the globe. They are mainly caught by
industrial pelagic fisheries. Among the fishing methods, pelagic
longlines show the largest spatio-temporal coverage, since they
have operated for several decades across all oceans, targeting all
main commercial tuna species except skipjack. Longlines resemble
long baited transects and catch a wide range of species in a
consistent way over a vast spatial scale and longline catch data
have been previously used to analyse changes in abundance
(Myers and Worm, 2003), diversity (Worm et al., 2005), range
contraction (Worm and Tittensor, 2011) and biogeography
(Reygondeau et al., 2012).

Tuna longline catch and effort data for the Atlantic, Indian
and Pacific Oceans were obtained from the five TRFMOs, i.e.
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