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a  b  s  t  r  a  c  t

Blue  marlin  (Makaira  nigricans)  are  among  many  species  of  tunas  and  billfishes  that  require  pelagic
longline  catch-effort  statistics  for  stock assessments.  Major  controversies  about  stock  status  have  arisen
because  of  issues  concerning  habitat  influences  on catch  rates,  but models  to describe  how  the  species
is  distributed  throughout  its entire  habitat  are lacking.  A  habitat  suitability  model  (HSM)  of  the  size and
spatial  distribution  of blue  marlin  habitat  by month  using  habitat  weighted-volume  (H)  is presented.
It  is estimated  from  oceanographic  data  partitioned  by 1◦ of  latitude  and  1◦ of longitude  in  50 layers
from  the  surface  to  a depth  of  1200  m using  dissolved  oxygen  tolerances  and  temperature  preferences
compiled  from  electronic  tagging.  The  physical  habitat  is  an amorphous  3-dimensional  space  whose
boundaries  are  constantly  changing  with  seasonal  and  longer-term  variations  in climate.  Fluctuations  in
habitat  volume  likely  contribute  to fluctuations  in  CPUE  that  are  independent  of  population  abundance
and  add  unrecognized  uncertainty  to  abundance  indices  used  to estimate  population  benchmarks.  The
results highlight  the  need  to expand  stock  assessments  to include  seasonal  and  annual  climatology.  The
HSM-based  habitat  weighted  volume  model  offers  a  way  to validate  analytical  methods  for  using longline
CPUE  to  monitor  population  health.

© 2016  The  Author.  Published  by Elsevier  B.V. This  is an  open  access  article  under  the CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Highly migratory pelagic marine species, such as Atlantic Blue
Marlin (Makaira nigricans) move extensively about the oceans but
are still confined by physical and biological processes to a dis-
crete spatial subset of that environment (Prince et al., 2010; Braun
et al., 2015). This envelope of compatible factors that constitutes
acceptable habitat is constantly changing in response to annual
and long-term trends and cycles in climatology (Robinson et al.,
2015). The narratives of assessment documents usually include
sections of text devoted to descriptions of these and other envi-
ronmental aspects of the habitat and behaviors of the species (e.g.,
Anon., 2011, 2012). However, the stock assessments usually limit
consideration of the physical aspects of habitat to the identifica-
tion of the geographical scope of the unit stock for the assessment.
The exception to this generality is that considerable effort is often
devoted to explicitly account for habitat effects on longline catch
rates (CPUE) while aggregating the data over time, space, and
gear configurations to estimate trends in population abundance
(Maunder and Punt, 2004; Maunder et al., 2006). The goal of such

E-mail address: phil goodyear@msn.com

efforts is to remove bias in catch-rate estimates of population abun-
dance trends used to fit stock assessment models (Hinton and
Nakano, 1996; Hinton and Maunder, 2004; Maunder et al., 2006).
The accuracy of the aggregated “habitat-standardized” time series
is essential for the models used to estimate the population bench-
marks and which are relied upon for the scientifically-based catch
limit recommendations for the fisheries (Punt et al., 2015). Ignoring
these issues has a history of sparking major controversy (e.g., see
Myers and Worm,  2003; Polacheck 2006). The need to remove con-
founding effects of environment-related differences in catch rates
is clear, but the best method is not. Efforts to accomplish this task
usually dominate the workload at stock assessment workshops. The
main statistical tools involve use of statistical models such as the
GLM to remove effects of factors that are correlates of environ-
mental variation (e.g., month, spatial grid, hooks between floats,
etc.), but environmental variables are often also explicitly included
(Maunder and Punt 2004; Bigelow and Maunder, 2007).

Research on the topic of “habitat standardization” has been
framed by the paradigm that longline catch is influenced primar-
ily by the relationship between the distributions of the hooks and
the species vulnerability with vulnerabilities a function of either
depth or some suite of environmental variables (e.g., Hinton and
Nakano, 1996; Bigelow and Maunder, 2007). The habitat stan-
dardizations do not model the entire habitat of the species, but
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apply distribution pattern assumptions to account for variation
in the overlap of the species and longline hook depths. Broader
issues that might arise from large-scale trends in acceptable habi-
tat are not considered in the process. Such trends are the inevitable
outcome of the warming global climate (Saba et al., 2015). They
will impart important sources of annual variability that cannot be
accommodated by habitat standardizations typically used to pro-
cess the CPUE data in advance of model fitting exercises that are
the core of most stock assessments. The explicit consideration of
the entire population in three-dimensional (3-D) space is impor-
tant because climate-induced density changes in one area can be
offset elsewhere without concomitant changes in overall popu-
lation abundances. Data simulations have been used to evaluate
assessment model performance for Atlantic blue marlin (Goodyear,
2003b; Lynch et al., 2012) and can be extended to evaluate alter-
native assessment methodologies that incorporate climate effects.
However this approach requires a way to predict marlin distri-
butions for changing climatology. Here, a model is developed to
describe the 3-D density distribution of Atlantic blue marlin based
on physical oceanography, species temperature preferences and
tolerances for dissolved oxygen (DO) to predict the effects of chang-
ing climatology on the distribution of the entire population. The
method is used to explore the month-to-month variability in aver-
age blue marlin abundance and density in 3-D space.

2. Methods

2.1. Model

Blue marlin is a tropical pelagic species seldom encountered
where surface water temperatures dip below 15 ◦C (e.g., Goodyear,
2003a; Su et al., 2008). It is managed as a single population in the
Atlantic (Anon., 2012); consequently, the areal extent of the mod-
eled population includes the entire Atlantic from 60◦ S to 60◦ N
latitude exclusive of major land masses. Data describing the physi-
cal environment within this region were used to predict blue marlin
abundances using a habitat suitability model (HSM). This approach
is in common use for predicting habitat quality from habitat suit-
ability indices (HSI) based on ecological niche theory (Hirzel and
Lay, 2008). Applications to billfish species include the identifica-
tion of potential new fishing grounds (Chang et al., 2012, 2013a),
and forecasts of the effects of climate change (Robinson et al., 2015).
Habitat models have also proved useful for predicting species con-
centrations for near real-time effort control in the context of quota
management (Hobday and Hartman, 2006; Hobday et al., 2010). I
extend the HSM approach to predict the relative concentration of
blue marlin by latitude, longitude, depth and month that can be
expanded to absolute densities in the same parameter space for
known or hypothetical total populations. The approach estimates
habitat weighted volume (H) to quantify the amount and distribu-
tion of usable habitat for the oceanographic features at a point in
time. The value of the habitat weighted volume Hijk, for a segment
of the water column at latitude i, longitude j, and depth layer k at
any point of time is given by:

Hijk = XijkVijk (1)

where Xijk is the cumulative HSM weighting based on the values of
the environmental variables existing at ijk,  and Vijk is the volume
of the corresponding segment of the water column. The cumula-
tive habitat weighted volume is simply the sum of the Hijk over
the whole of the modeled region. HSM combines various environ-
mental factors that define a species habitat into a single index to
represent the relative quality of the habitat at a particular location.
The environmental variables are categorized as having additive
or, if they represent critical limiting factors, having multiplicative

effects on habitat quality. Additive effects from different factors
are combined as a simple mean and multiplicative factors are com-
bined as the geometric mean. In the model developed here the Xijk
are assumed to consist of both additive and multiplicative factors
such that cumulative HSM weighting is given by:

Xijk =
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where Aijkl and Gijkn are the values of the additive factors (l) and
critical factors (n),  at location ijk,  and L and N are the number of
additive and critical factors, respectively. Assignment of the addi-
tive versus critical (multiplicative) attribute to an environmental
variable is somewhat arbitrary. Critical factors are those whose
negative effects cannot be ameliorated by positive effects of other
environmental factors. An index value of zero for a single critical
multiplicative factor propagates through the equation to make the
habitat suitability for that time-space to be zero. In contrast, the
cumulative effect of additive factors can be positive even when a
one of the included factors is zero. The numerical values of the
Aijkl and Gijkn are the habitat suitability values at the magnitudes
of the associated environmental variables at location ijk.  For the
blue marlin example here, DO is assumed to be a critical factor
because I assume marlin could not survive hypoxia, and temper-
ature effects are assumed to be additive. These assignments may
be reconsidered as more information becomes available and other
environmental features such as primary production and sea surface
height are included. The magnitudes of the habitat suitability values
range from 0.0 to 1.0.They can be derived from complicated fitted
models or, as in the example presented here, they can be drawn
from histogram representations of their respective cumulative dis-
tributions. The value of the indices (the Aijkl or Gijkn) at any point in
time and space are estimated from the values of the corresponding
environmental variables at that time and location.

I assume that the density distribution in the volume occupied by
the species is proportional to the Xijk such that the relative density
Rijk is given by:

Rijk = XijkVijk/

I∑
i=1

J∑
j=1

K∑
k=1

XijkVijk (3)

The product of Rijk and population number can be used to calculate
the absolute average density in time and space for any total num-
ber of fish in the population. Many pelagic species including blue
marlin and other billfishes exhibit diurnal cycles in their vertical
distribution, spending more time near the surface at night and are
deeper in the water column during daylight hours (e.g., Goodyear
et al., 2008; Braun et al., 2015; Lam et al., 2015). It may  be important
to capture this effect in the predicted species distributions. This
pattern is probably a local accommodation to factors ultimately
related to the diel cycle in ambient light intensity, though it may  be
mediated via a response to some other factor (e.g., prey distribu-
tions). No matter what the causative processes, the cyclic variation
in habitat utilization causes the fish to spend different amounts of
time in each layer of temperature that makes up the temperature-
depth stratification. This makes it possible to predict depths from
temperatures using information on the thermal stratification. The
most common implementation of this approach has been to nor-
malize the temperature measurement relative to the temperature
in the surface mixed layer, termed Delta T (�T). This approach
is commonly used to predict billfishes depth distributions from
oceanographic temperature data (e.g., Hinton and Nakano, 1996;
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