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a  b  s  t  r  a  c  t

Statistical  models  play  an  important  role  in  fisheries  science  when  reconciling  ecological  theory  with
available  data for wild  populations  or  experimental  studies.  Ecological  models  increasingly  include  both
fixed  and  random  effects,  and  are  often  estimated  using  maximum  likelihood  techniques.  Quantities  of
biological  or  management  interest  (“derived  quantities”)  are  then  often  calculated  as  nonlinear  functions
of fixed  and  random  effect  estimates.  However,  the conventional  “plug-in”  estimator  for  a  derived  quan-
tity  in  a maximum  likelihood  mixed-effects  model  will  be  biased  whenever  the  estimator  is  calculated
as  a nonlinear  function  of  random  effects.  We  therefore  describe  and  evaluate  a new  “epsilon”  estima-
tor  as  a generic  bias-correction  estimator  for derived  quantities.  We  use  simulated  data  to  compare  the
epsilon-method  with  an  existing  bias-correction  algorithm  for estimating  recruitment  in  four  config-
urations  of  an  age-structured  population  dynamics  model.  This simulation  experiment  shows  that  the
epsilon-method  and  the  existing  bias-correction  method  perform  equally  well  in data-rich  contexts,  but
the epsilon-method  is slightly  less  biased  in data-poor  contexts.  We  then  apply  the  epsilon-method  to  a
spatial  regression  model  when  estimating  an  index  of population  abundance,  and  compare  results  with
an  alternative  bias-correction  algorithm  that involves  Markov-chain  Monte  Carlo  sampling.  This exam-
ple  shows  that  the  epsilon-method  leads  to  a biologically  significant  difference  in estimates  of  average
abundance  relative  to the conventional  plug-in  estimator,  and  also  gives  essentially  identical  estimates  to
a sample-based  bias-correction  estimator.  The  epsilon-method  has  been  implemented  by us  as a generic
option  in  the  open-source  Template  Model  Builder  software,  and  could  be adapted  within  other  mixed-
effects  modeling  tools  such  as  Automatic  Differentiation  Model  Builder  for  random  effects.  It therefore
has  potential  to improve  estimation  performance  for mixed-effects  models  throughout  fisheries  science.

Published  by  Elsevier  B.V.

1. Introduction

Statistical models for the dynamics of wild populations are
designed to reconcile available data with ecological theory, and
are often used to make predictions about future, historical, or
otherwise unobserved process or events (Hilborn and Mangel,
1997). For example, population models are commonly used when
evaluating trade-offs arising from management decisions, e.g.,
determining what level of fishery catch is consistent with long-
term management objectives of fishery stakeholders (Walters and
Martell, 2004). Population models are also used to improve insight

∗ Corresponding author. Fax: +1 206 860 6792.
E-mail address: James.Thorson@noaa.gov (J.T. Thorson).

regarding environmental trends at large spatial scales, e.g., detect-
ing long-term trends in abundance for populations of birds (Schaub
et al., 2007).

Parameters in population dynamics models are often esti-
mated by identifying the values of parameters that maximize the
“likelihood function”. The likelihood function is defined as the
probability that the observed data would arise given a hypoth-
esized model and proposed set of parameter values. Modern
population models increasingly include a mix  of random and
fixed effects, where random effects are assumed to arise from a
random process and generally account for non-independence in
available data (Thorson and Minto, 2015). In particular, random
effects may  be used to approximate spatial variation in popula-
tion density and productivity (Kristensen et al., 2014; Thorson
et al., 2015b), variation in growth rates among individuals (Shelton
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et al., 2013), and variation over time in survival rates (Minto
et al., 2014). Random effects can also be used to approximate
more complicated stochastic processes, e.g., the unknown func-
tion representing the relationship between population abundance
and population growth or recruitment (Munch et al., 2005; Thorson
et al., 2014b).

Ecologists are often interested in predictions arising from pop-
ulation models, and these predicted quantities may  be a function
of random effects. As one example, population abundance could
be calculated as the sum of density at multiple sites, where the
logarithm of density log(di) at each site i is modeled as a normally-
distributed random effect, i.e., log (di) = �i, where �i∼N

(
�, �2

)
and � and �2 are the mean and variation of log-density among sites.
In this example, the random effect �i represents log-density at each
site, and �i is transformed via a nonlinear function (exponentiated)
when calculating the derived variable of interest (site-specific den-
sity). An ecologist might be interested in different “levels” of this
hierarchical model, e.g., either the average density among sites �
or the predicted density at any individual site di.

Whenever a random variable is transformed by a nonlinear func-
tion, the mean and variance of the variable are also transformed.
This is handled smoothly when estimating parameters using
Bayesian methods (i.e., given samples from the posterior probabil-
ity of parameters) because the value of the derived quantity can be
calculated for each realization of the posterior distribution. How-
ever, in maximum likelihood estimation, the derived quantity is
frequently calculated using a “plug-in” estimator, i.e.,d̂i = exp

(
�̂i

)
where �̂i is the estimate of log-density at site i, and d̂i is the plug-in
estimator for density. Given an unbiased estimate of log-density
�̂i in this example, the plug-in estimator of density d̂i = exp

(
�̂i

)
will be biased because the function exp

(
�̂i

)
is nonlinear. Previous

research has developed methods to calculate the expected value
of a derived quantity for specific fisheries models. For example,
Methot and Taylor (2011) developed an algorithm to approximate
the expected value of recruitment for marine populations, because
recruitment is often calculated as a nonlinear function of a ran-
dom effect representing temporal variation in survival of juvenile
fish. Methot and Taylor (2011) note that their algorithm is not nec-
essary for a Bayesian model of recruitment, because the expected
value can be calculated for any nonlinear function given a set of
samples from the posterior distribution of parameters. However,
most stock assessment models used for tactical management in the
United States and elsewhere continue to use maximum likelihood
estimation methods, so the Methot and Taylor (2011) algorithm
remains important for many stock assessment models.

Here we demonstrate a novel approach for approximating the
expected value of a quantity derived from random effects in a
mixed-effects model. We  first explain the theory of derived quan-
tities in more detail, and explain the proposed “epsilon” method.
We  then provide a simulation experiment comparing the epsilon
method with the previous Methot and Taylor (2011) algorithm for
the case of recruitment in population models for marine popula-
tions, using four levels of data availability. We  conclude by applying
the epsilon method when estimating expected population abun-
dance using a spatial regression model and a real-world application.
This case study shows that the bias-corrected estimate from the
epsilon method (and its estimated variance) are similar to estimates
from an alternative, sample-based bias-correction estimator. We
have implemented the epsilon method in the new Template Model
Builder software (publicly available at https://github.com/kaskr/
adcomp), and it can be applied off-the-shelf to other mixed-effects
models.

2. Methods

2.1. Defining bias in maximum likelihood estimates of
mixed-effects models

Fixed effects are parameters that are estimated by identify-
ing which values maximize the likelihood function, defined as
the probability (likelihood) of obtaining the observed data given
a hypothesized value and proposed values for the fixed effects. By
contrast, random effects are treated as random variables, and there-
fore are represented by a distribution of possible values where that
distribution generally has a finite mean and variance. For mixed-
effects models, the marginal likelihood function is calculated by
integrating across all possible values of the random effects. Random
effects are included in statistical models to account for situations
in which available data are not statistically independent (e.g., vari-
ation over time, space, or among individuals), and mixed-effects
models represent a generic approach for calculating the covaria-
tion among data that arises from a hypothesized model (Thorson
and Minto, 2015). Values for random effects in maximum likelihood
models can be predicted after fixed effects have been estimated (we
note that other authors sometimes refer to the task of predicting
random effects based on estimated fixed effects as “estimating” the
random effects). Values for random effects are generally predicted
via “empirical Bayes” (de Valpine, 2009), i.e., by plugging in the
maximum likelihood estimate of fixed effects and then setting ran-
dom effects to the mode or mean of their conditional distribution.
However, it is possible to estimate fixed effects by maximizing the
likelihood function without ever predicting the value of random
effects. In the following, we  are concerned with providing unbiased
predictions of quantities that are calculated as a nonlinear function
of random effects, and this in no way  affects the estimates of fixed
effects that arise from maximum likelihood estimation.

Maximum likelihood estimates of fixed effects are generally
“consistent”, i.e., will converge to their true value given that sam-
ples sizes increase indefinitely (given reasonable conditions and
that the model is correct; see Gelman et al. (2003, pg. 107–111)).
By contrast, Empirical Bayes predictions of random effects are not
generally consistent. Instead, additional data will often result in an
increase in the number of random effects that must be predicted,
thus maintaining a constant ratio of data per random effect.

Despite providing a consistent estimate of fixed effects, max-
imum likelihood estimates may be biased. An estimator �̂ of

parameter � is said to be biased if E
[

�̂
]

− � /= 0 for a given sam-

ple size, and maximum likelihood estimates are often biased
given small sample size. Bias-correction methods generally exist,
and can be used to calculate a “bias-corrected” estimator �̂BC

that is unbiased for all sample sizes (i.e., where E[�̂BC] − � = 0
regardless of sample size). However, bias-corrected estimators gen-

erally increase the total estimation variance, i.e., Var
[

�̂BC − �
]

>

Var
[

�̂PI − �
]

(where the left-hand side is the variance of the bias-

corrected estimator, and the right-hand side is the variance of
the plug-in estimator �̂PI without bias correction). There is there-
fore a tradeoff between bias and variance when deciding whether
to use bias-correction methods when estimating parameters via
maximum likelihood. This definition of bias and bias-correction
applies to both estimates of fixed-effects (via the likelihood func-
tion), and predictions of random effects (conditional on estimated
fixed effects). In the following, we are specifically concerned with
bias-correction for predictions of random effects, and a general
treatment of bias-correction for fixed-effects in nonlinear mixed-
effects models is not addressed here.

http://https://github.com/kaskr/adcomp
http://https://github.com/kaskr/adcomp
http://https://github.com/kaskr/adcomp
http://https://github.com/kaskr/adcomp
http://https://github.com/kaskr/adcomp


Download English Version:

https://daneshyari.com/en/article/6385290

Download Persian Version:

https://daneshyari.com/article/6385290

Daneshyari.com

https://daneshyari.com/en/article/6385290
https://daneshyari.com/article/6385290
https://daneshyari.com

