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a  b  s  t  r  a  c  t

Catch-per-unit-effort  (CPUE)  data  are  routinely  standardized  to  account  for factors  that  influence  catch
rates  that  are  not related  to resource  abundance.  Despite  improvement  in  the  methods  applied  to  CPUE
standardization,  for  many  datasets  model  diagnostics  can  still  indicate  poor  conformity  to  modeling
assumptions,  imprecision  and  unexplained  fishing  behaviors.  In this  study  we examine  catch  rate  data  of
an Irish  mid-water  pair  trawl  fleet  targeting  albacore  tuna  (Thunnus  alalunga)  in  the North  East  Atlantic.
A  fleet  strategy  of  searching  and  congregating  on  fish  aggregations  combined  with  negative  skew  in
model  residuals  suggest  that  multiple  components  exist  within  the  dataset.  Assuming  up  to  five com-
ponents,  finite  mixture  models  are  applied  and  compared  using  the  Bayesian  information  criterion.  The
two  component  model  most  consistently  explained  observed  distributions  in fishing  behaviors  and  catch
rates.  Finite  mixture  modeling  markedly  improved  conformity  to modeling  assumptions,  resulting  in
substantial improvement  in the  precision  of  specific  components  used  in  CPUE  standardization  and
reduced  inter-annual  variability  of the  catch  rate  trend.  These  methods  may  facilitate  investigations
of  technological  creep  but  also  raise  questions  on  how  best  to  use  the results  in  assessment.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Stock assessments for many fisheries rely on fishery-dependent
catch and effort data to measure annual trends in the relative abun-
dance of the stock (Hilborn and Walters, 1992). Ideally indices
of abundance are based on fishery-independent data collected
through scientific surveys which use standardized conditions to
eliminate or minimise the influence on catch rates of factors other
than resource abundance. However, such surveys are often not eco-
nomically feasible due to the large spatial extent of many fisheries,
particularly those for migratory species such as tunas. Instead catch
rates calculated from fishery-dependent catch and effort data are
often relied upon in stock assessment, and assumed to be propor-
tional to underlying resource abundance (Hinton and Maunder,
2004). However, debate about the limitations of using catch per
unit effort (CPUE) data questions the assumed relationship between
catch rates and underlying resource abundance (Harley et al., 2001;
Richards and Schnute, 1986).

Before CPUE data can be included in a stock assessment as
an index of abundance, it is important to standardize the data to
remove or minimise the effect that any varying factors other than
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resource abundance have on the catchability of a target species
(Maunder and Punt, 2004). Modelling of CPUE facilitates consider-
ation of a range of explanatory variables, or factors, that potentially
affect catch rates (Campbell, 2004), whilst still achieving the pri-
mary objective of detecting trends over time in the abundance of
the target species (Maunder and Punt, 2004). Generalised linear
modelling (GLM) approaches are used to standardize catch and
effort data assuming linearity of the model coefficients on a suitable
scale (Hinton and Maunder, 2004; Maunder and Punt, 2004).

However, problems persist when carrying out fishery-
dependent CPUE standardizations, generally because the
proportionality between resulting indices of abundance and
actual abundance remains uncertain. Campbell (2004) suggests
that these problems arise mainly due to a lack of data on inex-
plicit factors that are likely to affect catch rates. Salthaug and
Aanes (2003) question whether catch and effort data from a
commercial fishing fleet, driven by economic imperatives to
maintain high catch rates, can ever be used to produce an index
of abundance that actually reflects stock abundance. Concen-
tration of fishing effort in areas where target species aggregate,
without coverage of the actual spatial extent of the stock, can
result in catch rates displaying hyperstability and declining
more slowly than underlying resource abundance (Cooke and
Beddington, 1984; Erisman et al., 2011; Rose and Kulka, 1999).
Harley et al. (2001) also conclude that CPUE remains hyperstable
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and high while actual resource abundance declines due to the
behaviour of commercial fishing fleets. Nevertheless, indices of
abundance that inform stock assessment for non-target species
such as billfish (Ortiz and Arocha, 2004) as well as many of the
world’s most valuable and endangered species, such as sharks
and tunas (Punt et al., 2001; Rodriguez-Marin et al., 2003), remain
founded on fishery-dependent catch and effort data, due to the
prohibitive cost of deploying standardized scientific surveys.
It is therefore imperative that CPUE standardization methods
better account for the behaviours exhibited by commercial
fleets.

Albacore tuna (Thunnus alalunga) is a commercially important
species, contributing 6% to the annual global tuna catch of 4.3 mil-
lion t in 2010 (FAO, 2012). A total of 19,995 t were landed in the
North Atlantic in 2011 with some 82% of landings attributed to
directed French and Irish mid-water pair trawling (MWPT), Span-
ish bait-boat and troll, and Portuguese bait-boat fisheries operating
predominantly in the greater Bay of Biscay area and south-west of
Ireland (ICCAT, 2013a). Temporal and spatial availability of Atlantic
albacore tuna is widely variable (Cosgrove et al., 2014; ICCAT,
2013a) obliging fleets such as the Irish MWPT  to engage in strate-
gies of searching over wide offshore areas and congregating on fish
aggregations to maximise catches.

In the absence of fishery-independent surveys, assessments of
Atlantic albacore rely on standardized CPUE indices. Poly-modality
and skewness are common in the residuals of standardizations of
these catch rate data (Andrade, 2012; Cosgrove et al., 2013; Kell
et al., 2010; Kerwath et al., 2012). Potential causes include tempo-
ral (e.g. Wilberg et al., 2009) and spatial variability in catchability
(e.g. Thorson et al., 2012a; Walters, 2003), gear saturation (e.g.
Groeneveld et al., 2003), vessel constraints such as hold capacity
or handling time (e.g. Murray et al., 2013) and vessel interactions
(e.g. Gillis and Peterman, 1998). In addition we suggest that the
search and congregate strategies employed by the Irish MWPT  and
other fleets create sub-components within catch rate data which
also affect catch rate distributions.

A finite mixture model is a combination of two  or more prob-
ability density functions. By combining the properties of the
individual probability density functions, mixture models are capa-
ble of approximating any arbitrary distribution (McLachlan and
Peel, 2004). Examples of the application of finite mixture modelling
to fisheries include identification of sub-populations of recre-
ational anglers through examination of their excursion behaviour
(Provencher et al., 2002) and successfully distinguishing species
and enumerating their abundances from mixed fisheries data
(Fleischman and Burwen, 2003). More recently a finite mixture
model was employed to improve the standardization of fishery-
independent trawl survey data used to estimate abundance of
shoaling Pacific rock fish (Sebastes spp.) (Thorson et al., 2012b).
This approach has major potential to improve standardization of
fishery dependent data for species such as albacore tuna by better
approximating different modes of fishing and reducing variability
around standardized indices. Furthermore, while yet to be applied
in a fisheries context, finite mixture models have been used in
climate studies to improve simulations of inter-annual variabil-
ity of parameters such as rainfall (Zheng and Katz, 2008). Similar
improvements to inter-annual variability of catch rate indices could
maximise inclusion of operationally diverse fisheries, facilitating
more thorough and comprehensive assessment of available fish-
eries dependant data.

In this study we test the potential benefits of applying a finite
mixture modelling approach to the standardization of catch rate
data by applying this approach to the Irish MWPT  catch and effort
series. A comparison to the extant GLM method is made to assess
the relative conformity of finite mixture modelling to analytical
assumptions and relative precision.

2. Materials and methods

2.1. Data sources and description

Mid-water pair trawl (MWPT) fishing for albacore (Thunnus
alalunga) involves two  vessels towing a pelagic trawl between them
close to the surface at night when fish are predominantly shallow
(Cosgrove et al., 2014). Detailed catch and effort data for the Irish
MWPT  fishery were available from mandatory logbooks compiled
by the Irish Sea Fisheries Protection Authority for the years 2003 to
2012. Although Irish vessels commenced MWPT  in 1998, informa-
tion prior to 2003 were excluded due to major data gaps associated
with diversification from drift netting to MWPT  during this period.
This omission is thought to at least partly negate the learning curve
associated with introduction of a novel fishing technique. Available
data including location, date and quantity (kg) of landed albacore,
trip departure and landing dates, permitted nominal catch per day
at sea to be estimated for each compiled trip.

The full dataset used in this study comprised catch information
relating to 5627 days at sea carried out by 66 vessels from 2003 to
2012. Catch per day at sea ranged from 0 to 36,000 kg day−1 with a
mean of 2674 ± 154 kg (standard error). Considerable variation and
the presence of zero catches are characteristic of a fishery where
vessels must search to detect schools of tuna. Very large catches
occur when detections are successful, but poor or zero catches arise
when schools are not located.

2.2. Standardization model

Stefansson (1996) stresses the importance of selecting a model
where the zero values influence the standardized CPUE indices
explicitly and non-arbitrarily. The delta-lognormal GLM advanced
by Lo et al. (1992) is considered an appropriate method for handling
zero catches (Maunder and Punt, 2004), and was firstly used to stan-
dardize CPUE in this study. The delta-lognormal GLM handles zero
values explicitly by first modelling the probability of obtaining a
zero or positive catch, assuming a binomial distribution as a func-
tion of the set of explanatory variables. It then models the positive
(non-zero) catches assuming a lognormal distribution as a function
of the set of explanatory variables, before combining the two mod-
els to generate standardized CPUE indices (Hinton and Maunder,
2004; Maunder and Punt, 2004). Results from the binomial model
likelihood ratio tests indicated that year and vessel size category
had a significant effect on the probability of a trip encountering a
positive catch.

2.2.1. Positive catches
Here we focus on the standardization of positive catches (C)

rather than the binomial component. Making the fewest assump-
tions regarding the nature of the relationship, categorical rather
than quadratic or spline-form factors were employed:

- Year Y (categorical variable) Y = {2003, 2004,. . .,  2012},
- Quarter Q (categorical variable with 2 levels: July–September, Q3;

October–November, Q4),
- Fishing zones Z (categorical variable with 2 levels: Ireland (north

of 48◦ N), Bay of Biscay (south of 48◦ N)),
- Vessel size category V (m)  (categorical variable with 5 levels: C1:

<20; C2: 20 <25; C3: 25–<30; C4: 30–<40; C5:≥40),
- Effort E (continuous variable of the number of days at sea).

ICES area data available from logbook data were converted to
two general zones to take account of a small number of observa-
tions in some ICES areas and the general distribution of the Irish
fleet between two main areas to the west and south-west of Ireland
and the Bay of Biscay. Mean length of vessels involved in the fishery
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