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Previous works in the literature demonstrated that dispersion increases with heterogeneities and
travel distance in heterogeneous reservoirs. However, it remains challenging to quantify the
effects of subscale heterogeneities ondispersion. Scale-up of input dispersivity and other reservoir
attributes to the transport modeling scale should account for subscale heterogeneity and its
variability.
A method is proposed to quantify the uncertainties in reservoir attributes and dispersivity
introduced by scale-up. A random walk particle tracking (RWPT) method, which is not prone
to numerical dispersion, is used for transportmodeling. First, to scale-up rock properties including
porosity and permeability, volume variance at the transport modeling scale is computed cor-
responding to a given spatial correlationmodel; numerous sets of “conditioning data” are sampled
from probability distributions whose mean is the block average of the actual measure values and
the variance is the variance of block mean. Stochastic simulations are subsequently performed
to generate multiple realizations at the transport modeling scale. Next, multiple sub-grid
geostatistical realizations depicting detailed fine-scale heterogeneities and of the same physical
sizes as the transportmodeling grid block are subjected to RWPT simulation. Effective longitudinal
and transverse (horizontal) dispersivities in two-dimensional models are determined simulta-
neously by matching the corresponding breakthrough concentration history for each realization
with an equivalent medium consisting of averaged homogeneous rock properties. Aggregating
results derived with all realizations, we generate probability distributions of scaled-up
dispersivities conditional to particular averaged rock properties, fromwhich values representative of
the transport modeling scale are randomly drawn.
The method is applied to model a tracer injection process. Results obtained from coarse-scale
models, where reservoir properties and dispersivities are populated with the proposed approach,
are compared to those obtained from fine-scale models. Our results verify that dispersivity
increases with scale and demonstrate that (1) uncertainty distributions in recovery obtained
by accounting for variability owing to scale-up capture the actual fine-scale behavior; and
(2) ignoring sub-scale uncertainties would underestimate the ensuing uncertainty in recovery
performance. An important contribution of this work is that it presents a quantitative and
systematic procedure to scale-up both rock and flow-related properties. It reinforces the notion
that deterministic conditioning data does not exist in reservoir modeling.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Dispersion in porous media results from the interplay
between convective spreading and diffusion (Perkins and
Johnston, 1963). Convective spreading occurs because of
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variations in path lengths and solute particles following
different streamlines (Jha et al., 2011). Diffusion, on the
other hand, is the process whereby random motion of solute
particles is involved in a net movement corresponding to
the concentration gradient and is described by Fick's law. It
is enhanced by additional mixing caused by concentration
gradients as a result of uneven fluid velocities (Aronofsky
and Heller, 1957). Presence of local velocity gradients due
to multi-scale heterogeneous rock properties can enhance
mixing (Lake, 1989).

It has been extensively reported in the literature that dis-
persivity increases with distance (Gelhar et al., 1992; Fleurant
and Van Der Lee, 2001) and time (Binning and Celia, 2002).
This scale-dependent behavior is usually described as non-
Fickian, anomalous, or non-Gaussian (Berkowitz et al., 2000;
John, 2008), characterized by early breakthrough and long- or
heavy-tailed effluent histories at the late times. Heavy-tailed
nature of breakthrough concentration (BTC) profiles has been
also observed under convergent radial flow around injectors
and producers (Pedretti et al., 2014). Under converging flow,
heavy-tailed behavior of transport heavily depends on the
vertical architecture and connectivity patterns between the
injecting and producing locations. Jha et al. (2011) observed
that diffusion is an important element in Fickian transport
because it helps to ensure that movement of solute particles is
independent and random (particles aremoving from regions of
low-velocity to high-velocity and vice versa). In case of realistic
parabolic velocity profile in pore throat (similar to flow between
two parallel plates), the velocities of particles near the porous
material surface are not independent (due to no-slip boundary
conditions at the solid surfaces) and in the absence of diffusion,
solute particles near the low velocity region cannot move into
main flow stream. In other words, without diffusion, each solute
particle would follow the same streamline without interacting
with particles from other stream lines. The randomness intro-
duced by diffusion has allowed particles near the solid porous
material with low velocity to switch between different stream-
lines and acquire independent velocity.

At the reservoir or field scale, non-Fickian behavior can be
explained by both large-scale heterogeneity and unresolved
sub-scale heterogeneities. Gylling et al. (1999), Becker and
Shapiro (2003), and Gouze et al. (2008) attributed non-Fickian
dispersion to long-range spatial correlation of geological features
(e.g., increase in correlation in the permeability field), resulting
in velocities to be correlated over large distances. A com-
mon example would be fractured formations with dual
porous systems (Bijeljic et al., 2013). Non-Fickian disper-
sion may also be explained by the temporal correlations of
the solute motion due to mass transfers in small-scale
geological structures (Dentz et al., 2004; Le Borgne and
Gouze, 2008). As noted by Le Borgne and Gouze (2008), it is
most probable that both spatial correlations controlled by
large-scale structures and temporal correlations controlled
by small-scale structures lead to non-Fickian transport in
some heterogeneous reservoirs. Since heterogeneity varies as a
function of scales, description of dispersion must account for
impacts of heterogeneity and scale (Arya et al., 1988; Gelhar
et al., 1992; Mahadevan et al., 2003; Berkowitz et al., 2006; Jha
et al., 2009, 2011; John et al., 2010).

Several studies (Aronofsky and Heller, 1957; Scheidegger,
1988; Berkowitz et al., 2006; Jha et al., 2011) discussed the

specific issues about applicability of classical advection–dis-
persion equation (ADE) for modeling transport behavior of
both Fickian and non-Fickian characteristics. The existence of
preferential flow paths was clearly shown in laboratory-scale
systems (Hoffman et al., 1996; Oswald et al., 1997). Some
experimental studies also revealed systematic deviation be-
tween experimental BTCs and ADE predictions. Levy and
Berkowitz (2003) also measured the BTCs in homogeneous
meter-length flow cells and observed non-Fickian dispersion
behavior in terms of early-time and late-time arrivals (tails).
The classical ADE formulation is not suitable for modeling non-
Fickian transport because dispersion is modeled as a sum of
diffusion and convective spreading, which act independent-
ly from each other, ignoring the mixing introduced by the
interaction of these two mechanisms.

Other issue in the solute transport modeling is the numerical
dispersion (artificial dispersion). Numerical dispersion is the
result of truncation error and generally overwhelms physical
dispersion (Lantz, 1971; Fanchi, 1983; Haajizadeh et al., 1999;
Binning and Celia, 2002). Many numerical schemes generate
significant numerical dispersion and, therefore, lead to an
overestimation of transverse mixing. Although numerical
dispersion could be partially decreased by choosing proper
discretization scheme (e.g., mesh size and time steps) and
incorporating higher-order approximation, it still poses a
significant challenge when used to analyze effects of physical
dispersion. Advection dominated problems often suffer from
numerical dispersion and numerical oscillations (instabilities)
(Zheng and Bennett, 2002; Salamon et al., 2006a; Hoteit et al.,
2002; Fleurant and Van Der Lee, 2001). These problems could be
solved by selecting higher grid resolution and small time steps.
These numerical problems can also be alleviated by choosing
appropriate numerical scheme and better flux approximations,
resulting in long executions times even with the CPUs available
these days (Liu et al., 2004; Salamon et al., 2006a). Alter-
native method of solving partial differential equation (ADE)
is particle tracking (Lagrangian method) based approach.
Particle tracking is a grid-free approach capable of elimi-
nating numerical dispersion (Salamon et al., 2006a; Jha
et al., 2009; John et al., 2010). Its computational require-
ment is also less as compared to FD/FV/FE-based simulator,
since particles move independently and parallel computing
formulation is favorable.

Particle tracking formulations can be classified into a number
of categories: (1) random walk particle tracking (RWPT) or
classical randomwalk (CRW); and (2) continuous time random
walk (CTRW). In RWPT, each transit time step τ = Δt is
considered as discrete, constant, and deterministic whereas
transition length vector ξ is independent and identically
distributed (i.i.d.) random variables with zero mean and
unit variance (Salamon et al., 2006a). In CTRW, each τ and ξ
are random variables following a probability density function
ψ(τ, ξ) = ψs(ξ) ψt(τ), where both τ and ξ are independent,
stationary stochastic processes (Srinivasan et al., 2010).

Different approaches were described in the literature
for representing sub-scale effects in coarse-scale continu-
um flow simulations. Barker and Fayers (1994) introduced
pseudo(effective) coefficients, referred to as α-factors, in
the flux terms of the transport equation to relate compositions of
fluids leaving a grid block to the average compositionswithin the
grid block. Efendiev et al. (2000) derived expressions for
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