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ABSTRACT

Parameter estimation is an important part of numerical modeling and often required when a coupled
physical-biogeochemical ocean model is first deployed. However, 3-dimensional ocean model simulations
are computationally expensive and models typically contain upwards of 10 parameters suitable for esti-
mation. Hence, manual parameter tuning can be lengthy and cumbersome. Here, we present four easy to
implement and flexible parameter estimation techniques and apply them to two 3-dimensional biogeo-
chemical models of different complexities. Based on a Monte Carlo experiment, we first develop a cost
function measuring the model-observation misfit based on multiple data types. The parameter estima-
tion techniques are then applied and yield a substantial cost reduction over ~ 100 simulations. Based
on the outcome of multiple replicate experiments, they perform on average better than random, unin-
formed parameter search but performance declines when more than 40 parameters are estimated together.
Our results emphasize the complex cost function structure for biogeochemical parameters and highlight

dependencies between different parameters as well as different cost function formulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Parameter estimation is an important aspect of numerical mod-
eling in general and biogeochemical (BGC) ocean modeling in par-
ticular. The process of estimating parameter values based on obser-
vations is especially relevant in the context of BGC models because
they feature uncertain parameters that depend on, or represent bio-
logical properties that, unlike fundamental physical constants, may
change in time and space (Mattern et al., 2012). BGC parameters are
required to represent the integrated response of the entire plankton
community in a given region and within a specific time frame. This
makes these parameters less portable from one model configuration
to another and typically requires parameter estimation using local
observations for a new model setup.

Many BGC model formulations exist; in terms of complexity they
differ mainly in the number of BGC variables that they simulate and
the pathways that connect them. Commonly used BGC models of low
complexity have as few as three or four variables, while commonly
used high complexity models may have more than 20 (Friedrichs
et al., 2007). The number of uncertain parameters typically increases
with the number of variables (Denman, 2003), rendering parameter
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estimation for complex models a more challenging and computa-
tionally intensive task. In addition, more complex models require
more observations to constrain their parameters. As oceanic obser-
vations of BGC properties and processes are sparse, previous studies
have shown that relatively few BGC parameters can effectively be
constrained with widely available observations, even for less com-
plex BGC models (Matear, 1995; Ward et al., 2010; Fiechter et al.,
2013).

There is a wide variety of parameter estimation techniques that
differ in complexity both in terms of cost for implementation and
computational expense. The former refers to the effort required to
implement the technique which may include model-specific changes
or additions to the model code, while the latter refers to computer
time that is needed to run the technique which can typically be
expressed in the number of required model evaluations.

Variational techniques (see e.g. Lawson et al., 1996; Ward et al.,
2010; Bagniewski et al., 2011) often employ gradient descent meth-
ods to search for cost function minima. This approach is a compu-
tationally efficient way to find minima, yet it typically requires a
linearized or adjoint version of the model’s code to obtain the cost
function gradient or an approximation of it. These model-specific
requirements increase the effort to implement the techniques, espe-
cially for complex models. In addition, variational techniques can
easily get trapped in local minima (Ward et al., 2010), increasing
the computational cost by requiring multiple estimation runs with
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different starting conditions to find global minima (Schartau et al.,
2001).

Parameter estimation techniques that do not rely on gradient
information directly are often referred to as heuristic techniques.
They are typically easier to implement but there is no guaranteed
convergence to a minimum even when operating in close proximity
to it. Some techniques, such as the Nelder-Mead method (Doerffer
and Fischer, 1994) approximate the cost function gradient locally
based on systematic sampling of cost function values. Many other
techniques do not attempt to approximate gradient information at
all, they contain stochastic elements to find lower cost function
values, which are also designed to decrease the likelihood of get-
ting trapped in local minima. Heuristic Parameter estimation often
borrows ideas from real world concepts, for example simulated
annealing (e.g. Matear, 1995; Hurtt and Armstrong, 1996) that is con-
ceptually based on a physical cooling process converging towards a
global energy minimum.

Here, we focus on evolutionary algorithms and similar heuristic
techniques based on biological concepts, mainly that of natural evo-
lution (the terms evolutionary algorithm and genetic algorithm are
often used interchangeably, although genetic algorithms are tech-
nically a subclass of evolutionary algorithms (Bick and Schwefel,
1993)). In the following we will summarily refer to this class of
parameter estimation techniques as evolutionary techniques.

Evolutionary techniques have been applied to low dimensional
BGC models in earlier studies: Schartau and Oschlies (2003) use a
micro-genetic algorithm and five types of BGC observations to esti-
mate the values of 13 parameters across three 1-dimensional NPZD
models at different locations, and Kettle (2009) uses a very similar
setup to estimate 11 parameters using backscatter and chlorophyll-a
observations. Ward et al. (2010) compare the use of a micro-genetic
algorithm with that of a gradient descent-based variational adjoint
technique and concludes that both perform similarly in terms of
lowering the model-data misfit when estimating up to 10 parame-
ters; the adjoint technique yields more precise estimates, yet is more
prone to get trapped in local minima in higher dimensional cases. In
Riickelt et al. (2010) a hybrid approach that combines the benefits of
gradient descent with that of evolutionary techniques is employed to
estimate 12 parameters. More recently, Kuhn et al. (2015) applied an
evolutionary algorithm to estimate 13 BGC parameters at 6 locations
in the subpolar North Atlantic.

All of the above studies use 1-dimensional models, that are
configured to represent a vertical water column and rely on thou-
sands of model evaluations to perform one estimation experiment
— and many experiments with different starting values to ensure
convergence to a global minimum or to obtain estimates of param-
eter uncertainty. Here, we apply several evolutionary techniques to
estimate 9 and 43 parameters of two different 3-dimensional BGC
models using data of chlorophyll-g, nitrate (NO3) and, in the case
of the more complex model, measured silicate concentrations. The
computational cost of 3-dimensional models allows us to expend
only a few experiments with ~100 model evaluations each. Hence,
our goal is to test whether evolutionary techniques are usable and
yield good results in terms of lowering the cost function, even for a
low number of model evaluations and in high dimensional parame-
ter spaces. While it is unlikely that many of the models’ parameters
can be fully constrained in this manner, we show that the choice of
cost function and the types of observations included in the cost func-
tion help to constrain the estimated parameter choices and reduce
problems of overfitting.

Prior to performing parameter estimation, we use Monte Carlo
experiments in which parameter values are repeatedly drawn ran-
domly in order to test several cost function formulations based
on different types of observations and assess their ability to
constrain parameter values and examine correlations between
them. This helps us select a combined cost function for the

parameter estimation that includes two surface chlorophyll-a-based
contributions and a NO3 contribution. The Monte Carlo experiments
also help to evaluate the results of our parameter estimation experi-
ments, by allowing us to compare the convergence rate of the param-
eter estimation techniques against results that can be expected from
unguided, random sampling.

2. Methods
2.1. The NPZD and NEMURO models

The two BGC models we use in this study are embedded in a
3-dimensional physical model based on version 3.7 of the Regional
Ocean Modelling System (ROMS; Haidvogel et al., 2008). The model
domain covers the eastern Pacific coastline from 30°N to 48°N,
extending westward from the coast to 134°W at a 0.1° horizontal
resolution (Fig. 4a). Vertically, the model is split into 42 terrain-
following layers. Forcing for the physical model (wind, solar radi-
ation, air temperature, pressure and humidity data) as well as
boundary conditions are provided by the Coupled Ocean Atmosphere
Mesoscale Prediction System (COAMPS; Doyle et al., 2009). The setup
of the physical model is nearly identical to that in Veneziani et al.
(2009) where it is described in more detail. This physical model setup
has also been combined with various BGC models (Goebel et al.,
2010; Raghukumar et al., 2015; Song et al., 2016).

Our BGC model of low complexity resolves concentrations of NO3,
phytoplankton and zooplankton biomass as well as detritus (NPZD).
It is based on the ROMS NPZD model of Fiechter et al. (2009) but
with iron limitation excluded. This model uses nitrogen as its cur-
rency, measuring all variables in units of nitrogen concentration
(mmol N m~—3). For the NPZD model, we selected 9 BGC parameters
to be adjusted. This selection includes all the BGC parameters of
the model, with the exception of parameters related to well known
physical properties such as the fraction of photosynthetically active
shortwave radiation or the seawater light attenuation. Note that
our model configuration does not include direct remineralization of
phytoplankton or zooplankton to NOs, and zooplankton excretion
to detritus. All parameters and their reference values are listed in
Table Al. The reference values are based on literature sources and
contain adaptations for the California Current System (Powell et al.,
2006; Fiechter et al., 2009).

Our second model is a ROMS implementation of NEMURO (Kishi
et al., 2007) that contains a total of 11 BGC variables, consisting of
3 nutrients (nitrate, ammonium, silicate), 2 phytoplankton groups
(larger diatoms and smaller nanophytoplankton), 3 zooplankton
groups (microzooplankton, mesozooplankton, predatory zooplank-
ton), and 3 classes of detritus (particulate and dissolved organic
nitrogen, opal). For NEMURO, we took the same approach as for NPZD
and selected all relevant BGC parameters in our configuration as
uncertain (our NEMURO configuration does not include inhibition of
grazing by predatory zooplankton in the presence of other zooplank-
ton). Our selection includes 48 parameters (listed in Table A2). Out
of the 48 parameters, we allowed 43 to vary independently, while
we identified the remaining 5 NEMURO parameters to be logically
dependent on the values of other parameters. For example, some
dependencies are linked to parameters serving multiple functions
in the NEMURO model formulation (e.g. a phytoplankton growth
parameter that also affects light attenuation), which are described
in more detail in Appendix A. In all of our experiments, the values
of these 5 parameters were determined based on the values of the
other 43 parameters. The reference parameter values for NEMURO
(Table A2) are based on those in Rose et al. (2015) and contain
domain-specific modifications.

The 5 dependent parameters identified above leave 43 inde-
pendent parameters that determine the dimension of the NEMURO
parameter space in our experiments. It should be noted that there is
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