
Time dependent intrinsic correlation analysis of temperature and
dissolved oxygen time series using empirical mode decomposition

Yongxiang Huang a, François G. Schmitt b,⁎
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072,
People's Republic of China
b CNRS and University of Lille 1, Laboratory of Oceanology and Geosciences, UMR 8187 LOG, 62930 Wimereux, France

a b s t r a c ta r t i c l e i n f o

Article history:
Received 5 December 2012
Received in revised form 22 May 2013
Accepted 17 June 2013
Available online 25 June 2013

Keywords:
Coastal oceanic time series
Oceanic temperature
Oceanic dissolved oxygen
Empirical mode decomposition
Hilbert spectral analysis
Cross correlation

In the marine environment, many fields have fluctuations over a large range of different spatial and temporal
scales. These quantities can be nonlinear and non-stationary, and often interact with each other. A good
method to study the multiple scale dynamics of such time series, and their correlations, is needed. In this
paper an application of an empirical mode decomposition based time dependent intrinsic correlation, of
two coastal oceanic time series, temperature and dissolved oxygen (saturation percentage) is presented.
The two time series are recorded every 20 min for 7 years, from 2004 to 2011. The application of the
empirical mode decomposition on such time series is illustrated, and the power spectra of the time series
are estimated using the Hilbert transform (Hilbert spectral analysis). Power-law regimes are found with
slopes of 1.33 for dissolved oxygen and 1.68 for temperature at high frequencies (between 1.2 and 12 h)
with both close to 1.9 for lower frequencies (time scales from 2 to 100 days). Moreover, the time evolution
and scale dependence of cross correlations between both series are considered. The trends are perfectly
anti-correlated. The modes of mean year 3 and 1 year have also negative correlation, whereas higher
frequency modes have a much smaller correlation. The estimation of time-dependent intrinsic correlations
helps to show patterns of correlations at different scales, for different modes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Generally in geosciences, but especially in the marine environment,
many fields have fluctuations over a large range of spatial and temporal
scales. To study their dynamics and estimate their variations at all
scales, high frequency measurements are needed (Chang and Dickey,
2001; Chavez et al., 1997; Dickey, 1991). Here a time series obtained
from automatic measurements in a moored buoy station in coastal
waters of Boulogne-sur-mer (eastern English Channel, France) is
considered, recorded every 20 min from 2004 to 2011 (Zongo and
Schmitt, 2011; Zongo et al., 2011). This fixed buoy station can record
various biogeochemical parameters simultaneously. Here, mainly to il-
lustrate the application of a new method for multi-scale data analysis
there is a focus on two parameters: temperature, due to its obvious
importance, influenced by the dynamics, by meteorology, and as a link
with ecosystem forcing, and dissolved oxygen time series, due to its im-
portant role in biological processes, and also for the probable growing
importance of this parameter to assess the quality of coastal waters, in
the framework of European directives (Best et al., 2007).

These physical and biogeochemical time series are nonlinear, and
non-stationary, and may possess interactions at different scales. In
order to consider their multi-scale dynamic properties and explore
their correlations at different scales, the empirical mode decomposi-
tion (EMD) framework is applied here (Huang et al., 1998).

EMD and the associated Hilbert spectral analysis (resp. Hilbert–
Huang Transform, HHT) have already been applied in marine sciences
(Dätig and Schlurmann, 2004; Hwang et al., 2003; Schmitt et al.,
2009; Veltcheva and Soares, 2004). For example, Hwang et al.
(2003) applied the HHT method to ocean wave data. They found
that the HHT method detects more energy in lower frequencies,
leading to a lower average frequency in HHT spectra than using the
Fourier framework. Dätig and Schlurmann (2004) showed that the
HHT method can used to study nonlinear waves using instantaneous
frequencies. Schmitt et al. (2009) applied the HHT method to charac-
terize the scale invariance of velocity fluctuations in the surf zone.
They observed that the scale invariance holds for almost two decades
of time scales.

In the following, the methodology is presented and then its appli-
cation is illustrated on the chosen time series. Section 2 presents the
Hilbert–Huang Transform method and the fairly recent time depen-
dent intrinsic correlation; Section 3 presents the data base; Section 4
presents the analysis of the intrinsic correlation and Section 5 draws
the main conclusion of this paper.
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2. Hilbert–Huang transform and time dependent
intrinsic correlation

In this section, the Hilbert–Huang transform and the empirical
mode decomposition based time dependent intrinsic correlation are
presented. These time series analysis techniques have been applied,
since their introduction in 1998 (Huang et al., 1998), in several
thousand different studies in natural and applied sciences. Here the
main idea is recalled but the method is not presented in too much
detail.

The HHT consists of two steps. The first step is the so-called
‘empirical mode decomposition’, which separates a multi-scale time
series into a sum of intrinsic mode functions without a priori basis
assumption (Flandrin and Gonçalvès, 2004; Huang et al., 1998). In
the second step, the Hilbert spectral analysis is applied to each
mode function to extract the time-frequency information. The
so-called Hilbert spectrum and the corresponding Hilbert marginal
spectrum are then introduced to characterize the time-frequency
distribution of a given time series (Chen et al., 2010; Huang, 2009;
Huang et al., 1998, 2008).

2.1. Empirical mode decomposition

Empirical mode decomposition is a fully adaptive technique to
study the nonlinear and non-stationary properties of time series
(Flandrin and Gonçalvès, 2004; Huang et al., 1998, 1999; Huang et
al., 2011). The main idea of EMD is to locally separate a given
multi-scale signal into a sum of a local trend and a local detail, respec-
tively, for a low frequency part and a high frequency part (Rilling et
al., 2003). The latter is called the intrinsic mode function (IMF), and
the former is called the residual. The procedure is repeated to the
residual, considered as a new times series, extracting a new IMF
using a spline function, and obtaining a new residual until no more
IMF can be extracted (Flandrin et al., 2004; Huang et al., 1998,
1999; Rilling et al., 2003). The EMD method then expresses a
multi-scale time series as the sum of a finite number of IMFs and a
final residual (Flandrin et al., 2004; Huang et al., 1998).

To be an IMF, an approximation to the so-called mono-component
signal, it must satisfy the following two conditions: (i) the difference be-
tween the number of local extrema and the number of zero-crossings
must be zero or one; and (ii) the running mean value of the envelope
defined by the local maxima and the envelope defined by the local
minima is zero (Huang et al., 1998, 1999; Rilling et al., 2003). The
so-called empirical mode decomposition algorithm is then proposed to
decompose a signal into IMFs (Huang et al., 1998, 1999; Rilling et al.,
2003):

1. identify the local extrema of the signal x(t);
2. construct upper envelope emax(t) by using the local maxima

through a cubic spline interpolation (other interpolations are also
possible). Construct a lower envelope emin(t) by using the local
minima;

3. define the mean value m1(t) = (emax(t) + emin(t))/2;
4. remove the mean value from the signal, providing the local detail

h1(t) = x(t) − m1(t);
5. check if the component h1(t) satisfies the above conditions to be

an IMF. If yes, take it as the first IMF C1(t) = h1(t). This IMF
mode is then removed from the original signal and the first resid-
ual, r1(t) = x(t) − C1(t) is taken as the new series in step 1. If
h1(t) is not an IMF, a procedure called the “sifting process” is
applied as many times as necessary to obtain an IMF (not detailed
here).

By construction, the number of extrema decreases when going
from one residual to the next; the above algorithm ends when the
residual has only one extrema, or is constant, and in this case no
more IMF can be extracted; the complete decomposition is then

achieved in a finite number of steps. The analyzed signal x(t) is finally
written as the sum of mode time series Ci(t) and the residual rn(t):

x tð Þ ¼
XN

i¼1

Ci tð Þ þ rn tð Þ: ð1Þ

Based on a dyadic filter bank property of the EMD algorithm, the
number of IMF modes is estimated as

N≤ log2 Lð Þ ð2Þ

where L is the length of the data in points (Flandrin et al., 2004;
Huang et al., 2008; Wu and Huang, 2004). Unlike Fourier based meth-
odologies, e.g., Fourier analysis and wavelet transform, this method
does not define the basis a priori (Flandrin and Gonçalvès, 2004;
Huang et al., 1998, 1999). It thus possesses full adaptability and is
very suitable for non-stationary and nonlinear time series analysis
(Huang et al., 1998, 1999).

2.2. Hilbert spectral analysis

To characterize the time-frequency distribution of the IMFmode, a
complementary analysis technique namely Hilbert spectral analysis
(HSA) is then applied to each IMF mode to extract the local frequency
information (Huang, 2009; Huang et al., 1998, 1999, 2011; Long et al.,
1995). In this complementary step, the Hilbert transform is used to
construct the analytical signal, i.e.,

C̃ tð Þ ¼ C tð Þ þ j
1
π
P∫þ∞

−∞

C t′
� �

t−t′
dt′ ð3Þ

in which P is the Cauchy principle value (Cohen, 1995; Flandrin,
1998; Huang et al., 1998; Long et al., 1995). The above equation can
be rewritten as

C̃ tð Þ ¼ A tð Þ exp jθ tð Þð Þ ð4Þ

in which A tð Þ ¼ C̃ tð Þ
���

��� is the modulus and θ tð Þ ¼ arctan IM C̃ tð Þ
� �.�

RE C̃ tð Þ
� ��

is the instantaneous phase function (Cohen, 1995;

Flandrin, 1998; Huang, 2009; Huang et al., 1998, 2011; Long et al.,
1995). The instantaneous frequency is then defined as

ω tð Þ ¼ 1
2π

dθ tð Þ
dt

: ð5Þ

Note that the instantaneous frequencyω is very local since the Hilbert
transform is a singularity transform and the differential operator is used
to define the frequency ω (Huang et al., 1998, 1999; Huang, 2009). It
was found experimentally that the Hilbert-based methodology is free
with the Heisenberg–Gabor uncertainty and can be used to describe
nonlinear distortions by using an intrawave-frequency-modulation
mechanism, in which the frequency can be varied with time in one
period (Huang, 2005; Huang et al., 1998, 2011). Therefore, the method
is free with high-order harmonic components, which are required in
Fourier-based methods to capture the non-stationary and nonlinear
characteristics of the data (Huang et al., 1998, 1999; Huang, 2005;
Huang et al., 2011).

Note that several methods exist, that could be applied to estimate
the instantaneous frequency, e.g., direct quadrature, and teager
energy operator; see more detail in (Huang et al., 2009a). In practice,
the Hilbert method already provides a good estimation of ω in a
statistical sense (Huang et al., 2010, 2011).

A Hilbert spectrumH ω; tð Þ ¼ A2 ω; tð Þ can be designed to represent
the energy of the original signal as a function of frequencyω and time.
It can be taken as the best local fit to x(t) using an amplitude and phase
varying trigonometric function (Huang, 2005). This corresponds to a
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