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A novel technique for nonlinear sequential data assimilation in computationally expensivefine-resolutionmodels
is introduced. The technique involves basis function approximation for dimension reduction andGaussian Process
Modelling for simulation speedup. The basis function approximation is carried out via the Singular Value Decom-
position (SVD) of the model ensemble. The Gaussian Process Models propagate the model solution in the error-
subspace defined by a finite set of basis functions. The developed technique can also be considered approximate
Particle Filtering with two classes of particles: model-particles representing an ensemble of computationally ex-
pensive model solutions, and emulator-particles representing an ensemble of fast and cheap model approxima-
tions. The algorithm was tested by assimilating synthetic data into a two-dimensional (one spatial dimension
plus time) sediment transport model in an idealised vertically-resolved benthic–pelagic system. The assimilation
algorithm updates 2 spatially varying state variables and 3 unknown parameters. Numerical experiments
illustrate robust performance of the technique for a wide range of the assimilation settings. The capabilities
and limitations of the approach are discussed, and further developments are outlined.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Uncertainty of complex environmental models is often high or even
unknown. Data assimilation techniques are employed to improve these
models and reduce their uncertainty. Integral to statistical data assimi-
lation is the evaluation of the quality of such improved model simula-
tions. In the context of sequential assimilation it is essential also to
propagate the error statistics in time.

For linear problems a Kalman Filter (KF) provides a variance mini-
mising solution (Jazwinski, 1970). The Extended KF (EKF) designed
for nonlinear problems can only handle weakly nonlinear models be-
cause the assumption is made that the error statistics evolves according
to a tangent linear model. The Ensemble Kalman Filter (EnKF) is a pop-
ular Monte Carlo that uses stochastic dynamic prediction, but relies on
EKF theory for data assimilation and thus assumes a Gaussian distribu-
tion for the error statistics (Evensen, 2003, 2009; Tippet et al., 2003).
Particle Filters (PF—Doucet et al., 2001) don't make specific distribu-
tional assumptions, and so provide amore general assimilation scheme.
PF has become well established in the statistical and signal processing
literature with a number of pilot applications in physical oceanography
and biogeochemistry (Dowd, 2006, 2007; Jones et al., 2009; Loza et al.,
2003; van Leeuwen, 2003; Zhou et al., 2006).

The theory underlying PF is well understood, but its practical im-
plementation is moderated by a number of issues (Bengtsson et al.,
2008; Berliner and Wikle, 2007). One of the key problems, known
as particle degeneracy, is a loss of diversity amongst the particle en-
semble. The problem is particularly acute in high-dimensional sys-
tems because the number of particles required grows exponentially
with dimension. In oceanographic applications this problem is further
exacerbated by typically high computational expenses of forward
modelling which limit the ensemble size to a few tens or hundreds
of particles. Given the high dimensionality of ocean models (~10e5–
10e7), the challenge is to track the evolution of high-dimensional
probability density functions (PDFs) with a limited number of parti-
cles (~100).

This paper describes a novel technique for data assimilation in com-
putationally expensive fine-resolution models. It employs Singular
Value Decomposition (SVD) for dimension reduction andmodel emula-
tion for simulation speedup. The sampling strategy is based on Particle
Filtering. The algorithm is tested by assimilating synthetic data into a 2-
d (one spatial dimension plus time) model of sediment transport in a
coupled vertically-resolved benthic-pelagic system.

2. Methodology

2.1. Background theory

Consider a physical system represented in discrete form by its
state vector x̃ of dimension Nx̃. Augment the vector x̃ with the vector
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of model parameters θ (of dimension Nθ) and define the extended
state vector x ¼ x̃; θð Þ of dimension Nx ¼ Nx̃ þ Nθ. Assume that x
evolves according to the following model:

x tið Þ≡ xi ¼ Mi−1 x ti−1ð Þ;η ti−1ð Þ½ � ð1Þ

where M is the system of the model governing equations, and
ηi ≡ η(ti) is a zero-mean, white noise sequence independent of past
and current states. At time ti, observations are available as a vector
yo(ti) of dimension Ny. The true state xt at time ti is assumed to be re-
lated to the observation vector via the observation equation

yo tið Þ≡ yoi ¼ Hi xt tið Þ; ε tið Þ
h i

ð2Þ

where Hi(⋅, ⋅) is the measurement operator and εi ≡ ε(ti) is another
zero-mean, white-noise sequence of known distribution.

It is assumed that at time ti a set of measurements Yio={yjo ; j=1,…,
i} is available and p(xi−1|Yi−1

o ) is known. The requirement is to con-
struct the PDF of the current state xi, given all the available data: p(xi|
Yi
o), the analysis distribution.
The posterior distribution p(xi|Yio) can be obtained in two stages:

forecast and analysis (Gordon et al., 1993; Wikle and Berliner,
2007). During the forecast step, we obtain the prior PDF of the state
at time ti by propagating p(xi−1|Yi−1

o ) forward in time:

p
�
xi Y

o
i−1

�� � ¼ ∫p xi xi−1j Þp xi−1 Yo
i−1

�� �
dxi−1:

�� ð3Þ

During the analysis step, a measurement yio is used to update the
prior via Bayes rule

p
�
xi Y

o
i

�� � ¼ p
�
yoi xij Þp�xi Yo

i−1

�� �
p yoi Yo

i−1

�� �� ð4Þ

where the normalising denominator is given by

p yoi Yo
i−1

�� � ¼ ∫p yoi xij Þp xi Y
o
i−1

�� �
dxi:

���
ð5Þ

Under the assumption that the model and measurement functions
are linear and ηi, εi are additive Gaussian variables, the analytical so-
lution to Eqs. (3)–(5) gives the Kalman Filter. The first order exten-
sion of the KF to nonlinear models (EKF) is obtained by linearising
the model and measurement operators Eqs. (1) and (2) around the
most recent state estimate. Monte Carlo approximation to the mean
and variance of the posterior distribution Eq. (4) gives EnKF. The
analysis step of all these techniques relies on KF theory and assumes
Gaussian distribution of the forecast error statistics.

Particle Filter provides an alternative, fully non-linear data assimila-
tion method, which relies on the assumption that the particle ensemble
is an appropriate representation of a large-scale nonlinear system. The
key idea is to approximate the required PDF by a finite number of
model realisations (particles),with discreteweights assigned to eachpar-
ticle, and propagate the particles forward in time. The forecast step is
based on the model Eq. (1). The analysis step draws samples from the
posterior Eq. (4) where one may think of p(xi|Yi−1

o ) as a “prior” density,
which is combined with the likelihood p(yio|xi). A number of statistical
techniques are available to draw samples from p(xi|Yio). A comprehensive
review can be found in (Andrieu et al., 2003; Arulampalam et al., 2002;
Doucet et al., 2001). Herewe outline theMetropolis–Hastings (MH) algo-
rithm,which is aMarkovChainMonteCarlo (MCMC) sampling technique
(Chen, 2003; Gelman et al., 2004) underlying our sampling strategy. We
abbreviate this as MH–MCMC.

The idea of MCMC is to structure a randomwalk through the space
we want to sample from, with the probability density governing the
walk structured in such a way that the limiting distribution of the
sampled points is the distribution of interest. In our case we would

generate a sample of size n {xij : j=1,…,n} from p(xi|Yio). The MH–
MCMC algorithm proceeds as follows:

1. Draw a proposal from the density q(xij+1|xij);
2. Accept this proposal as the next state in the random walk with

probability

pðxjþ1
i

jxjiÞ ¼ min
p
�
xjþ1
i Yo

i

�� �
=q xjþ1

i

� ���xjiÞ
p xji Y

o
i

�� �
=q xji

� ���xjþ1
i

� � ; 1

2
64

3
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¼ min
pðyoi xjþ1

i

��� �
p xjþ1
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i−1
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q xji
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i
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p yoi xji

��� �
p xji Y

o
i−1

�� �
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ð6Þ

3. If the move is rejected, remain in the same state, so set xij+1=xi
j.

The logic for the algorithm is clear from the form of the acceptance
probability in Eq. (6). The algorithm is driven into areas of high prob-
ability, with a correction for asymmetry of the proposal density. Note
that the ratio of proposal density term cancels if the proposal is sym-
metric. A very readable introduction to MCMC methods is provided
by Smith and Roberts (1993).

After the burn-in period, samples of xij converge to the posterior
distribution Eq. (4). In practice, typically only samples of the “prior”
p(xi|Yi−1

o ) are available but the probability density itself is not
known which makes evaluation of Eq. (6) not trivial. However, taking
the proposal distribution equal to the “prior”

q xið jx�i Þ ¼ p xi Y
o
i−1

�� �� ð7Þ

reduces Eq. (6) to the ratio of the likelihoods

pðxjþ1
i jxjiÞ ¼ min

p
�
yoi xjþ1

i

��� �
p yoi xji

��� �
; 1

� i
2
64 ð8Þ

which is relatively easy to evaluate.
Since the proposal density now is taken equal to the “prior”, in

what follows, unless otherwise specified, we refer to p(xi|Yi−1
o ) as a

proposal density.
According to Eq. (7), during MCMC sampling a random sample

must be drawn from the proposal density p(xi|Yi−1
o ) represented by

a discrete set of particles. In high-dimensional systems an insuffi-
ciently large set of these particles may give a poor approximation of
the continuous distribution, which in turn may lead to degeneracy
of the ensemble. In practice, the number of particles one can afford
to propagate forward in time is often limited by computational ex-
penses of forward modelling. In the case of complex ocean models
this number can be as low as a few tens.

In the following sections we develop fast and cheap approximation
of the complexmodel called an emulator. An emulator is typically orders
of magnitude faster than themodel, and allows one for quick evaluation
of many thousands of approximate model trajectories. Instead of a few
tens of discrete samples, continuous distributions may in principle be
approximated by many thousands of emulator particles.

In what follows, the model is considered deterministic (i.e., for a
given set of parameters and initial conditions, it always predicts the
same solution). Observations and emulators are stochastic, and emu-
lators are used as a model substitute during the MCMC sampling. The
stochasticity of the emulator is only due to errors of approximating
complex deterministic model.

14 N. Margvelashvili, E.P. Campbell / Journal of Marine Systems 90 (2012) 13–22



Download	English	Version:

https://daneshyari.com/en/article/6387250

Download	Persian	Version:

https://daneshyari.com/article/6387250

Daneshyari.com

https://daneshyari.com/en/article/6387250
https://daneshyari.com/article/6387250
https://daneshyari.com/

