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a b s t r a c t 

The question of whether features of the ocean bottom topography can be identified from measurements 

of water level is investigated using a simplified one-dimensional barotropic model. Because of the nonlin- 

ear dependence of the sea surface height on the water depth, a linearized analysis is performed concern- 

ing the identification of a Gaussian bump within two specific depth profiles, (1) a constant depth domain, 

and, (2) a constant depth domain adjoining a near-resonant continental shelf. Observability is quantified 

by examining the estimation error in a series of identical-twin experiments varying data density, tide 

wavelength, assumed (versus actual) topographic correlation scale, and friction. For measurements of sea 

surface height that resolve the scale of the topographic perturbation, the fractional error in the bottom 

topography is approximately a factor of 10 larger than the fractional error of the sea surface height. 

Domain-scale and shelf-scale resonances may lead to inaccurate topography estimates due to a reduction 

in the effective number of degrees of freedom in the dynamics, and the amplification of nonlinearity. 

A realizability condition for the variance of the topography error in the limit of zero bottom depth is 

proposed which is interpreted as a bound on the fractional error of the topography. Appropriately de- 

signed spatial covariance models partly ameliorate the negative impact of shelf-scale near-resonance, and 

highlight the importance of spatial covariance modeling for bottom topography estimation. 

© 2016 The Author. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Ocean bottom topography, i.e., the field of ocean depth relative 

to the undisturbed water surface, is a necessary component for 

the development of realistic ocean models. Topography influences 

ocean circulation at a wide range of spatial and temporal scales via 

kinematics, potential vorticity conservation, and through bound- 

ary layer processes. Gridded maps of ocean bottom topography 

are readily available to ocean modelers; however, their accuracy is 

poorly quantified ( Marks and Smith, 2006 ) and the impact of to- 

pographic error on ocean forecasts is significant ( Heemink et al., 

2002; Blumberg and Georgas, 2008 ). 

It is within this context that the problem of estimating bottom 

topography using data assimilation is studied here. The goal is to 

combine measurements of water surface elevation with hydrody- 

namic constraints in order to improve topographic maps, particu- 

larly on continental shelves where errors in gravimetrically-derived 

topography are large ( Marks and Smith, 2012 ). The rationale for 

such an approach is provided by the observation that harmonic 
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constants of the main diurnal (K 1 ) and semidiurnal (M 2 ) tides are 

known from satellite altimetry with 1cm precision, or better, over 

much of the ocean ( Ray and Byrne, 2010; Stammer et al., 2014 ), 

which generally corresponds to a fractional error of 1–5%. The idea 

is that these data could be assimilated into an ocean tide model 

based on the Laplace Tidal Equations in which the bottom topog- 

raphy is treated as a distributed control parameter, and more ac- 

curate estimates of bottom topography could be obtained, partic- 

ularly in regions where the relative uncertainty in the depth is 

greater than the relative uncertainty in the satellite-derived tides. 

This generic approach has been tried previously ( Mourre et al., 

2004 ), but generalizing and validating the approach more widely 

has proved challenging. 

The present approach studies the bottom topography estimation 

problem in a maximally-simplified setting in order to understand 

the interplay between the dynamics, domain geometry, and data 

density. An idealized one-dimensional model consisting of shallow 

water flow over variable topography is used to examine these fac- 

tors by using the same estimation technique concurrently imple- 

mented with more realistic models. Thus, the present paper exam- 

ines the accuracy with which isolated perturbations to sea-floor 
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topography can be identified from measurements of water level 

alone. The tidal dynamics are approximated by a one-dimensional 

linear shallow water model. The novelty of studying this sim- 

ple system is that it allows the nonlinearity connected with the 

undisturbed water depth to be exhibited, and it permits a more 

systematic exploration of parameter space than would be other- 

wise possible. 

This paper is organized as follows. The following section de- 

scribes how variational data assimilation may be applied to iden- 

tify bottom topography in a one-dimensional wave equation. Fol- 

lowing that, the observability of bottom topography is analyzed 

in two particular cases, (1) a topographic perturbation to a con- 

stant depth ocean, and (2) a topographic perturbation to a con- 

stant depth ocean adjacent to a near-resonant continental shelf. 

In Section 3 the observability is defined and quantified by a sim- 

ple norm, and the observability of the topography is contrasted 

with the observability of the sea surface height for the constant 

depth case. This is followed, in Section 4 , by an analysis of a near- 

resonant continental shelf. For both geometries the observability 

is described as a function of non-dimensional parameters of rele- 

vance to applications, namely, the ratio of the spatial data density 

to the topographic length scale, the ratio of the wavelength of the 

tide to the topographic length scale, and the ratio of the assumed 

correlation scale of the topography to the actual correlation scale. 

2. A simple model for bottom topography estimation using 

variational data assimilation 

Consider a model for tidal waves within a domain between 

x = 0 , the “coastline,” where the depth-integrated water transport, 

U , vanishes; and x = L, the “open ocean,” where water elevation, η, 

is specified. Both U and η are taken as complex-valued functions 

of x , the complex harmonic constants at a given tidal frequency, ω, 

here equal to 2 π/ 12 . 42 h 

−1 , the main semi-diurnal tidal frequency. 

The hydrodynamics consist of the continuity and momentum equa- 

tions, 

− jω U + g Hηx + C d u f U/H = 0 (1) 

− jωη + U x = 0 (2) 

H = H 0 (x ) + h (x ) , (3) 

where j = 

√ −1 , H is water depth, g is gravitational acceleration, 

C d is the bottom drag coefficient, and u f is a bottom friction veloc- 

ity which may depend on x . The equations are supplemented by 

H = H 0 (x ) + h (x ) to emphasize that the bottom topography shall 

be taken as a control variable, with H 0 its first guess, and h a cor- 

rection to be determined by data assimilation. The system repre- 

sents a simplification of the full shallow water system in which 

bottom stress is linearized, water density is assumed constant, the 

advective nonlinearity is neglected, and quadratic nonlinearity in- 

volving η has been neglected. The specification of the equations 

is completed by the boundary conditions, U(0) = 0 and η(L ) = η0 . 

In this one-dimensional setting the Coriolis term modifies the dis- 

persion relation in a non-essential manner and so rotation is ne- 

glected. 

The topographic estimation problem is posed in the language 

of variational state estimation, where the model state consists of 

( H, U, η). An estimate for the state is sought which is consistent 

with the dynamics specified above, where adjustments to the bot- 

tom topography, h , bring the modeled and observed values of η
into agreement, allowing for measurement error. It is assumed that 

the expected value of h is zero and its spatial covariance is given 

by C HH . For testing purposes, the true solution ( ̃  H , ̃  U , ̃  η) is known, 

and measurements of ˜ η are given, d i = ̃

 η(x i ) + εi , for i = 1 , . . . , M, 

together the variance of ε i , σ
2 , the measurement noise. The covari- 

ance C HH shall be represented in terms of a variance, σ 2 
H (x ) , and a 

spatial correlation function, c HH ( x, y ), as 

C HH (x, y ) = σH (x ) c HH (x, y ) σH (y ) . (4) 

Particular models for the variance and correlation shall be dis- 

cussed below. 

The estimator for ( H, U, η) is given by the minimizer of the ob- 

jective function, 

J(H, U, η) = 

∫ L 

0 

∫ L 

0 

h (x ) C −1 
HH (x, y ) h (y ) d yd x + 

M ∑ 

i =1 

| εi | 2 σ−2 , (5) 

where the data error is given by εi = η(x i ) − d i , and | εi | 2 = εε∗

is defined using the complex-conjugate of ε, indicated with the 

super-script ∗. Taking the variation with respect to ( H, U, η) leads 

to the following system for the minimizer of J , 

jωμ + C d u f μ/H − ζx = 0 (6) 

jωζ − g ( Hμ) x = −
M ∑ 

i =1 

δ( x − x i ) ( η( x i ) − d i ) σ
−2 (7) 

λ = −gμη∗
x + C d u f μU 

∗/H 

2 , (8) 

with boundary conditions μ(0) = 0 and ζ (L ) = 0 . The auxiliary 

variables μ( x ) and ζ ( x ) are Lagrange multipliers associated with 

the equalities (1) and (2) . The optimal estimate of topography, 

H(x ) = H 0 (x ) + h (x ) , is computed from H 0 , λ( x ), the covariance 

function C HH ( x, y ), and h ( x ) using the definition, 

h (x ) = 

∫ L 

0 

C HH (x, y ) Re [ λ(y )] dy, (9) 

where Re [ · ] denotes the real part of its argument. 

The objective function is quadratic in h and ε i , but non- 

quadratic in the variables, H, η and U . Nonlinearity is an impor- 

tant issue, but it will not be emphasized compared to the basic 

linear structure of the estimation problem. Instead, assume the so- 

lution consists of a small perturbation ( H 

′ , U 

′ , η′ ) to a basic state, 

( H , U , η) . Then the solution of equations (1) –(8) approximately sat- 

isfies, 

− jωU 

′ + gH 

′ ηx + g H η′ 
x + C d u f U 

′ / H − C d u f U / H 

2 
H 

′ = 0 (10) 

− jω η′ + U 

′ 
x = 0 (11) 

H 

′ = (H 0 − H ) + h 

′ . (12) 

The topographic correction, h ′ = 

∫ L 
0 C HH Re [ λ] , is once again ob- 

tained from the first-order optimality condition for an extremum 

of J ( H, U, η) written in terms of the adjoint variables ( λ, μ, ζ ), 

jωμ + C d u f μ/ H − ζx = 0 (13) 

jωζ − g( H μ) x = −
M ∑ 

i =1 

δ(x − x i )(η(x i ) − ηi ) σ
−2 (14) 

λ = −gμη∗
x + C d u f μU 

∗
/ H 

2 
, (15) 

with boundary conditions μ(0) = 0 and ζ (L ) = 0 . If the set, 

( H , U , η) , used for the linearization solves equations (1) –(3) , then 

the expression for λ may be written as, 

λ = −μ∗ jω U / H 

(
1 + 2 jC d u f / (ω H ) 

)
, (16) 

where the dependence of λ on the basic state fields U and H is 

exhibited. 
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