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a b s t r a c t

In this study, we develop a shallow-water depth-integrated non-hydrostatic numerical model (SNH model)

using a hybrid finite-volume and finite-difference method. Numerical discretization is performed using the

non-incremental pressure-correction method on a collocated grid. We demonstrate that an extension can

easily be made from an existing finite-volume method and collocated-grid based hydrostatic shallow-water

equations (SWE) model to a non-hydrostatic model. A series of benchmark tests are used to validate the

proposed numerical model. Our results demonstrate that the proposed model is robust and well-balanced,

and it captures the wet–dry fronts accurately. A comparison between the SNH and SWE models indicates

the importance of considering the wave dispersion effect in simulations when the wave amplitude to water

depth ratio is large.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to bed topography changes, currents, and interactions with

coastal structures, waves that propagate from offshore regions to

nearshore regions are subject to shoaling, refraction, diffraction, and

breaking. The accurate prediction of these phenomena is of great im-

portance for the study of nearshore hydrodynamics and is crucial for

predicting sediment transport and bed deformation processes. Vari-

ous approaches have been proposed for modeling these phenomena,

e.g., by solving the Navier–Stokes equations (NSE), shallow-water

equations (SWE), Boussinesq-type equations (BTE), and the SWE with

non-hydrostatic pressure corrections (SNHE). All of these approaches

have advantages and disadvantages.

Advances in computational technology have facilitated the de-

velopment of direct numerical simulation (DNS) models for solving

the NSE, Reynolds-averaged version (RANS) models for solving the

Reynolds-averaged NSE, and large-eddy simulation (LES) models for

solving the filtered NSE. The flow details can be resolved using a

DNS, RANS, or LES model, and the nonlinearity and wave dispersivity

are fully maintained, which is useful for fundamental wave-related

mechanistic studies (e.g., Lin et al., 1999; Hu et al., 2012). However,

these models have disadvantages. First, they are computationally ex-
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pensive and thus they are usually limited to small-scale simulations

(especially with DNS and LES models). Second, these type of mod-

els generally require the implementation of complex algorithms to

track the free surface. The implementation of a free surface tracking

method requires additional computational time (the simulation do-

main also needs to be extended above the water surface) and, most

importantly, there are also challenging issues related to the meth-

ods themselves, e.g., accurately conserving fluid mass and calculating

spatial gradients near the free surface (Sussman and Puckett, 2000).

Moreover, the irregular bed topography is non-trivial to process when

developing a NSE based model.

Compared with the 3D (or vertical 2D) DNS, RANS, or LES models,

those for solving the depth-integrated equations are attractive due to

their lower computational cost and because it is relatively easier to

handle complex boundaries and they are simpler to code. The SWE

can be solved effectively based on the theory of hyperbolic conser-

vation laws. By using a shock-capturing numerical scheme, a SWE

model without any tunable coefficients can predict the wave break-

ing phenomenon well; for instance, the wave energy dissipated in the

wave breaking process and the maximum wave runup height after

the wave breaks can be predicted reasonably well (Li and Raichlen,

2002; Tan and Chu, 2010; Hu et al., 2015). One of the disadvantages

of the SWE models for applications in the nearshore area is the lack

of representation of wave dispersivity. When short waves propagate

over a long distance, significant errors can be predicted in the wave
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phase and amplitude (Grilli et al., 2007; Kazolea and Delis, 2013). Un-

like the SWE, the BTE can represent the weak dispersivity of waves

propagating in shallow or intermediate depth water. Numerous stud-

ies have tried to improve the nonlinearity and dispersivity proper-

ties of the BTE. For instance, Gobbi and Kirby (1996) derived a fully

nonlinear BTE model with high-order accuracy in terms of dispersion

based on a specifically designed dependent variable (a weighted aver-

aged velocity potential at two vertical locations). The BTE, especially

the improved versions, contain high-order spatial or temporal deriva-

tives (e.g., a fifth-order spatial derivative in the model proposed by

Gobbi and Kirby (1996)), which is a challenging issue for numerical

implementation. In addition, it is generally inappropriate to apply the

BTE models directly to simulate wave breaking processes in the surf

zone as a predefined breaking criterion is required, and it is usual to

introduce an artificial viscosity term or a surface roller model to nu-

merically dissipate the wave energy during the wave breaking pro-

cess (Brocchini, 2013; Mccabe et al., 2013).

To simultaneously represent the wave dispersivity satisfactorily

and to avoid calculating high-order spatial derivatives, a SNH model

for solving the SNHE was recently proposed by Stelling and Zijlema

(2003), who decomposed the pressure into hydrostatic and non-

hydrostatic parts, and by assuming appropriate vertical distributions

for the non-hydrostatic pressure and vertical velocity, the SNHE was

deduced by depth-integrating the RANS with suitable boundary con-

ditions. Using the Arakawa C grid and employing a finite-difference

scheme, Stelling and Zijlema (2003) obtained an elliptic equation for

the non-hydrostatic pressure. The solution of this equation was then

used to compute the horizontal velocity components at the new time

level and finally, the water surface level was updated via the free sur-

face kinematic boundary condition. Based on the study of Stelling

and Zijlema (2003), various SNH models have been developed us-

ing either the non-incremental pressure-correction method (NPCM),

incremental pressure-correction method (IPCM) (Guermond et al.,

2006), or (fully) fractional step method (FSM) (Chorin, 1968). Note

that the names of these solution methods may vary and they are

elusive in previous studies, we here follow the definitions presented

in Guermond et al. (2006), where the NPCM and IPCM are two ver-

sions of the pressure-correction method (Goda, 1979; van Kan, 1986).

When solving the SNHE, both the NPCM and IPCM split the overall

solution into two sub-steps, where the former solves the SWE (with-

out considering the non-hydrostatic pressure effect) in the first sub-

step and computes the non-hydrostatic pressure in the second sub-

step, whereas the latter includes the non-hydrostatic pressure effect

(approximated) to determine the intermediate velocity components

in the first sub-step, as well as computing the pressure difference

between the last and new time levels in the second sub-step. The

FSM is very similar to the NPCM when solving the SNHE; these two

can be distinguished that the NPCM applies a correction to the wa-

ter depth (or surface elevation) after the non-hydrostatic pressure is

solved in the second sub-step, whereas the FSM does not implement

this procedure. In the following, we refer to the SNH models using

the NPCM, IPCM, and FSM as SNH-NPC, SNH-IPC, and SNH-FSM, re-

spectively. Zijlema and Stelling (2005) and Yamazaki et al. (2009) de-

veloped SNH-FSM models using finite-difference schemes with the

same grid layout technique as that employed by Stelling and Zijlema

(2003). Zijlema and Stelling (2005) also developed a SNH-IPC model

and their numerical experiments showed that the SNH-IPC model

maintained the wave shape well, while significant wave damping was

predicted by their SNH-FSM model. Walters (2005) and Wei and Jia

(2013) developed similar SNH models using finite-element schemes,

where both employed a semi-implicit method to obtain provisional

solutions in the first sub-step. The two models developed by Walters

(2005) and Wei and Jia (2013) differed in that the former was a SNH-

FSM model whereas the latter was a SNH-NPC model. They also dif-

fered in their treatment of the convection terms as the former used

a Lagrangian advection method to enhance the numerical stability,

whereas the latter adopted a bounded upwind scheme to avoid spu-

rious oscillations. Cui et al. (2012) recently established a SNH-NPC

model based on the SWE solver developed by Cui et al. (2010). In Cui

et al. (2010), the finite-element algorithm for solving the SWE was

implemented in the model called TsunAWI (Behrens, 2008) and it

was converted into a finite-volume scheme with specifically defined

finite volumes. This SWE model generally performs well, but minor

non-physical oscillations in the solution can be predicted around dis-

continuities (Cui et al., 2010). In addition, the well-balanced property

of this SWE model was not verified.

Considering that most SNH models were developed based on

SWE solvers using the finite-difference or finite-element schemes,

while numerous SWE solvers have been developed based on the

finite-volume method, and given that the state-of-the-art of the SWE

solvers using the finite-volume method with schemes designed based

on the hyperbolic conservation laws are robust and they can cap-

ture shocks and discontinuities well, in the present study, we aimed

to develop a SNH model based on a SWE solver using the finite-

volume method. In particular, we considered the design of a numer-

ical scheme with the well-balanced property. We compared the per-

formance of our proposed model with existing finite-difference or

finite-element method-based SNH models.

The remainder of this paper is organized as follows. In Section 2,

we describe the governing equations and the numerical algorithms

for the SNH model. In Section 3, numerical tests are used to verify

various properties of the numerical model. Finally, conclusions and

discussions are presented in Section 4.

2. Numerical model

2.1. Governing equations

The 2D SNHE can be derived from the following 3D RANS
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where u, v, and w are the velocity components in the horizontal x-,

y-, and vertical z-directions, respectively; t denotes time; ρ is the flow

density; g is the acceleration due to gravity; and τxl xr (l, r = 1, 2, 3)
denote the shear stresses, where x1, x2, and x3 denote the x-, y-, and

z-coordinates, respectively. P denotes the pressure, which is decom-

posed into hydrostatic and non-hydrostatic components as

P = p + �, (2)

where p is the hydrostatic pressure defined as ∂ p
∂z

= −ρg and � is the

non-hydrostatic pressure.

Following Stelling and Zijlema (2003), we assume that � and w

vary linearly with water depth; hence, their depth-averaged values

are � = �s+�b
2 and w = ws+wb

2 . In the following, the ( · ) denotes the

depth-averaging operator and the subscripts “s” and “b” denote the
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