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a b s t r a c t

Modeling ice covers as viscoelastic continua, Zhao and Shen, (2013) applied a two-mode approximate method

to determine the transmission and reflection between two different ice covers. This approximate solution

considered only two modes of the dispersion relation. In addition, the horizontal boundary conditions were

simplified by matching mean values over the interfaces. In this study, we employ a variational method (Fox

and Squire, (1990)) to calculate the wave transmission and reflection from two connecting viscoelastic ice

covers of different properties. The variational approach minimizes the overall error function at the interface

of two ice covers, hence is more rigorous than the previous approximate method that minimized the differ-

ence between mean values at the interface. The effect of additional travelling and evanescent modes are also

investigated. We compare results from different matching methods, as well as the effects of including addi-

tional modes. From this study, we find that additional modes do not always improve the results for our model.

For all cases tested, two modes appear to be sufficient. These two modes represent the open-water-like and

the elastic-pressure wave-like behavior. The two-mode approximate method and the variational method have

similar results except at very short wave periods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the rapid decrease of ice cover, wave conditions in the Arc-

tic have intensified (Thomson and Rogers, 2014). In response to in-

creased human activities, especially in the partially ice-covered re-

gion, wave models have begun including ice effects. For instance,

WAVEWATCH III which used to treat ice covers as islands (Tolman,

2003) now includes three more options. In its latest release (Tolman

et al., 2014, pp. 53–62), different physical processes are considered in

these options: a constant attenuation rate, an eddy viscosity (Liu and

Mollo-Christensen, 1988), and viscoelasticity (Wang and Shen, 2010),

all rely on parameterization that awaits further theoretical and obser-

vational development. In this study we focus on further developing

the viscoelastic theory which envisions an ice cover as a continuum

with some elastic property that changes wave speed without damp-

ing its energy and viscous property that mainly consumes energy but

may also contribute to wave speed change for high frequency com-

ponents.

Real ice covers are inhomogeneous. Waves propagating between

ice covers of different properties will transmit part of their en-

ergy and reflect the rest. Based on a thin-plate approach, this phe-

nomenon has been studied extensively between open water and

elastic plate and between different elastic plates (Squire, 2007, a
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review). Assuming that ice covers may be represented as a Voigt lin-

ear viscoelastic material, Wang and Shen (2011) studied this trans-

mission/reflection problem between open water and an ice cover us-

ing a two-mode approximate method. This method was extended to

transmission/reflection between two different ice covered regions in

Zhao and Shen (2013). The two-mode approximate method included

only two propagating modes closest to the open water waves and ig-

nored all other propagating modes and all evanescent modes permit-

ted by the dispersion relation. Furthermore, matching boundary con-

ditions at the interface of two different regions were only carried out

in an average sense.

The two-mode approximate method has the obvious advantage

of being simpler and computationally faster than other methods

that may include more modes and adopt a more rigorous matching

method at the interface. However, its effect on the predicted trans-

mission/reflection is uncertain until we compare the results with a

better mathematical procedure that includes more admissible modes

and treats the boundary conditions more rigorously. In this study, we

examine the effect of including more modes that exist in the disper-

sion relation, including both propagating and evanescent modes. We

also improve the matching criterion by using a variational method

as in Fox and Squire (1990). We compare these new results with the

two-mode approximate method, and previous studies that assumed

ice covers as pure elastic materials.

The organization of this paper is as follows. Section 2 briefly

outlines the theoretical formulation of the viscoelastic model. In

Section 3, the variational method is presented. Section 4 gives the
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Fig. 1. Schematic of the coordinate frame of the problem.

result of special cases to compare with previous studies for pure elas-

tic ice covers and the analysis on additional modes. Section 5 studies

the energy partitions among three main propagating waves in elas-

tic ice and viscous ice. The nature of these modes is also discussed.

Section 6 provides details of the error analysis for the current method.

The summary and conclusion are given in Sections 7 and 8 respec-

tively. A linear wave regime is assumed in this study.

2. The theoretical formulation

2.1. Definition of the domain

The present study analyzes the same two-dimensional problem

as in Zhao and Shen (2013). The sketch for the problem is shown in

Fig. 1. The two ice covers are assumed to be fully submerged.

2.2. Governing equations, boundary conditions on horizontal surfaces,

and the dispersion relation

In the present study, many more modes from the dispersion re-

lation as derived in Wang and Shen (2010) will be included, hence

for clarity, the derivation leading to the dispersion relation is briefly

repeated here.

As previously done, for the ice cover we use a Voigt viscoelastic

continuum model shown below

τmn = −pδmn + 2GSmn + 2ρiceνṠmn, (1)

where ρice is the density of the ice layer; τmn, Smn and Ṡmn represent

the stress tensor, the strain tensor and the strain rate tensor, respec-

tively; m and n represent x or z; G and ν are the effective shear modu-

lus and the effective kinematic viscosity of the ice layer, respectively;

p is the pressure and δmn the Kronecker delta. For the regions occu-

pied by an ice cover, either 1 or 3, the equation of motion is

∂Ui

∂t
= − 1

ρice

∇pi + νei∇2Ui + g, i = 1, 3, (2)

where Ui = uiêx + wiêz is the velocity vector, g the gravitational ac-

celeration,

νei = νi + iGi/ρiceω, i = 1, 3, (3)

is the viscoelastic parameter, and ω is the angular frequency of the in-

cident wave. Using the decomposition with potential function φ and

stream function ψ for the velocity (Lamb, 1932),

Ui = −∇φi + ∇ × (0, ψi, 0), i = 1, 3, (4)

we obtain

∇2φi = 0, (5)

∂ψi

∂t
− νei∇2ψi = 0, (6)

∂φi

∂t
− pi

ρice

− 
 = 0, i = 1, 3, (7)

Here, 
 = gz is the gravitational potential.

For the associated water region below the ice covers 1 and 3, i.e.

regions 2 or 4, we assume an inviscid fluid. The governing equations

are

∂Ui+1

∂t
= − 1

ρwater
∇pi+1 + g, (8)

∇2φi+1 = 0, (9)

∂φi+1

∂t
− pi+1

ρwater
− 
 = 0, i = 1, 3. (10)

The water velocity is related to the velocity potential only

Ui+1 = −∇φi+1, i = 1, 3. (11)

Next we introduce the boundary conditions at the horizontal in-

terfaces between air–ice, air–water, and water-sea floor. These con-

ditions between regions 1 and 2 are identical to those between 3

and 4.

No stress at the air–ice interface

τxz,i = ρiceνei

(
∂ui

∂z
+ ∂wi

∂x

)
= 0, τzz,i

= −pi + 2ρiceνei

∂wi

∂z
= 0, z = 0, i = 1, 3. (12)

Stress continuity at the ice–water interface

τzz,i = −pi + 2ρiνei

∂wi

∂z
= τzz,i+1 = −pi+1, τxz,i

= ρiceνei

(
∂ui

∂z
+ ∂wi

∂x

)
= 0, z = −hi, i = 1, 3. (13)

Kinematic condition at the air–ice interface

wi = ∂ηi

∂t
, z = 0, i = 1, 3. (14)

Continuity of velocity at the ice–water interface

wi = wi+1 = ∂ηi+1

∂t
, z = −hi, i = 1, 3. (15)

No penetration condition at the sea floor

wi+1 = 0, z = −H, i = 1, 3. (16)

In terms of the Fourier modes, the solutions are

φi(x, z, t) = (Ai(n) cosh ki(n)z + Bi(n) sinh ki(n)z)eiki(n)xe−iωt ,

(17)

ψi(x, z, t) = (Ci(n) cosh αi(n)z + Di(n) sinh αi(n)z)eiki(n)xe−iωt ,

(18)

for the ice region i = 1, 3, and

φi+1(x, z, t) = Ei(n) cosh ki(n)(z + H)eiki(n)xe−iωt , (19)

for the water region i + 1 = 2, 4. In the above, α2
i
(n) = k2

i
(n) − iω/νei,

i = 1, 3 and n indicates the n-th mode, as the dispersion relation to be

shown has solutions, each one is an admissible mode. The no pene-

tration condition at the sea floor is automatically satisfied by the cosh

term in the potential and stream functions.

As shown in Appendix B in Zhao and Shen (2013), these boundary

conditions together yield a set of homogeneous equations for Ai(n),

Bi(n), Ci(n), and Di(n) as shown below,
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