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a b s t r a c t

Except for vertical diffusion (and possibly the external mode and bottom drag), oceanic models usually rely on

explicit time-stepping algorithms subject to Courant–Friedrichs–Lewy (CFL) stability criteria. Implicit meth-

ods could be unconditionally stable, but an algebraic system must be solved at each time step and other

considerations such as accuracy and efficiency are less straightforward to achieve. Depending on the tar-

get application, the process limiting the maximum allowed time-step is generally different. In this paper,

we introduce offline diagnostics to predict stability limits associated with internal gravity waves, advection,

diffusion, and rotation. This suite of diagnostics is applied to a set of global, regional and coastal numerical

simulations with several horizontal/vertical resolutions and different numerical models. We show that, for

resolutions finer that 1/2°, models with an Eulerian vertical coordinate are generally constrained by verti-

cal advection in a few hot spots and that numerics must be extremely robust to changes in Courant number.

Based on those results, we review the stability and accuracy of existing numerical kernels in vogue in prim-

itive equations oceanic models with a focus on advective processes and the dynamics of internal waves. We

emphasize the additional value of studying the numerical kernel of oceanic models in the light of coupled

space–time approaches instead of studying the time schemes independently from spatial discretizations.

From this study, we suggest some guidelines for the development of temporal schemes in future generation

multi-purpose oceanic models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Context

Owing to advances in computational power, global climate mod-

els are now configured with increasingly higher horizontal/vertical

resolution. The extension of the range of application of this type of

model, originally developed for low-resolution large-scale configura-

tions, raises some new challenges of numerical and physical nature

(Griffies, 2013; Griffies and Treguier, 2013) and requires the accurate

representation of a wider energy spectrum. Moreover, multi-

resolution configurations via one-way or two-way nesting tech-
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niques are now mature (Debreu and Blayo, 2008; Debreu et al., 2012)

and could be used to locally reach marginal submesoscales resolving

resolutions (e.g. Marchesiello et al., 2011). Low-resolution configu-

rations imply relatively slow and laminar (linear) flows while many

emerging issues arise when extending the range to finer scales: the

appropriate representation of internal wave dynamics is increasingly

important to predict physical mixing (e.g. Arbic et al., 2012), the addi-

tion of biogeochemical tracers imposes new constraints on advection

schemes (e.g. Lévy et al., 2001), adequate capture of the transfers

between resolved and unresolved scales is required (Thuburn et al.,

2014), spurious dianeutral mixing remains a key issue in the pres-

ence of mesoscale eddies (Ilicak et al., 2012). Another difficulty is

the proper synergy between physical parameterizations and the

numerics to ensure regularity of the physical solutions by limiting

fine-scale variance (e.g. Hecht, 2010). More generally, high-resolution

modeling requires a finer consideration of numerical methods. This

has motivated the emergence of comprehensive initiatives like

http://dx.doi.org/10.1016/j.ocemod.2015.06.006
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the COMODO1 and DCMIP2 projects aimed at intercomparison of

numerical kernels to exploring the merits of different approaches

through a suite of semi-idealized testcases.

The objective of this paper is to define the main guidelines

for the development of temporal schemes in future generation

multi-purpose (i.e. used for applications ranging from paleo-climate

to eddying regimes) oceanic models. Because changing the time-

stepping algorithm is one of the most fundamental change to an

existing numerical code, it is legitimate to first proceed to a deep

investigation of the requirements. Originally, for climate models,

temporal discretizations were mainly chosen for their simplicity and

upon additional criteria:

(i) Their ability to conserve quadratic quantities (e.g. energy, po-

tential vorticity or enstrophy) when combined with specifi-

cally designed second-order centered schemes for non-linear

momentum advective terms formulated in a vector invariant

form of the shallow-water equations (e.g. Sadourny, 1975). This

led to the choice of the Leapfrog scheme in the momentum

equation to minimize dissipation. Energy and/or potential en-

strophy conserving schemes are considered an efficient way to

suppress nonlinear instabilities.

(ii) Conservation of the second moments (i.e. quadratic variance)

for tracers which resulted in the use of centered-in-space and

Leapfrog-in-time schemes for tracer advection.

(iii) For their computational efficiency (i.e. the stability range with

respect to the number of computations of the rhs) for inter-

nal gravity waves. An efficient way for extending the stability

range of Leapfrog based models is the pressure gradient av-

eraging approach of Brown and Campana (1978) which is still

being used in several numerical models (Griffies et al., 2000).

As a result, most numerical models were historically based on a

leapfrog scheme for both the tracer and momentum equations, com-

bined with second-order centered schemes. Note that, even if most

models now favor the flux form to the vector-invariant form of mo-

mentum equations, it remains crucial to know as accurately as possi-

ble the discrete properties of numerical schemes in terms of energy

dissipation to close the energy cycle (Eden et al., 2014).

When high-resolution turbulent regimes start emerging in nu-

merical simulations the algorithmic choices must evolve beyond the

Leapfrog-in-time—second-order in space framework to accommo-

date to new constraints (e.g. Shchepetkin and McWilliams, 2005). In-

deed, as mentioned above, other important properties arise for finer

resolution: accuracy, for correct shape preservation and phase speed,

preservation of positivity hence good stability for advective and dif-

fusive processes, good dissipation properties when high-frequency

forcings are used, etc. This is especially true for terms integrated us-

ing explicit time-stepping but also for terms integrated using implicit

methods (typically vertical/isoneutral diffusion and bottom drag) for

which accuracy considerations should not be overlooked. In most

existing numerical models, the space–time algorithms are derived

by studying separately the space and time dimensions assuming

the other dimension is continuous (i.e. the underlying partial differ-

ential equation is semi-discretized, e.g. Hundsdorfer and Trompert,

1994; Shchepetkin and McWilliams, 2005). There is, however, a sec-

ond standard reasoning to derive space–time algorithms: the coupled

space–time approach for which both space and time dimensions are

discretized (e.g. Lax and Wendroff, 1960; Leonard, 1979; Daru and

Tenaud, 2004). This approach is more tedious to use but is expected

to provide a more accurate measure of the stability and numerical

errors for a given sub-system of the full system of equations under

1 French Numerical Ocean Modeling Community http://www.comodo-ocean.fr .
2 Dynamical Core Model Intercomparison Project https://www.earthsystemcog.org/

projects/dcmip/ .

consideration.3 Indeed, this would serve little purpose to combine a

low-order temporal scheme with a high-order space discretization.

A clear advantage of the space–time approach is to combine errors

associated with the space and time discretizations in the same study.

A long-standing belief is that a given process when integrated us-

ing small Courant numbers (compared to the CFL constraint) has in-

herently small numerical errors associated with the time-stepping

algorithm. From this perspective, improving the order of accuracy of

the time-stepping algorithm would not be a priority as long as suf-

ficiently small time-steps are chosen. This statement is, however, in-

exact because it ignores the interaction between time and space dis-

cretization errors. It is not unusual to see space–time discretization

schemes with large numerical errors for small Courant numbers and

less errors close to their stability limit (e.g. a Leapfrog scheme com-

bined with a second-order centered scheme). The objective of the

present study is first to estimate the typical order of magnitude of

Courant numbers encountered in realistic configurations. Then, us-

ing those estimates, we will proceed to a deep investigation of the

behavior of space–time numerical schemes usually found in state-of-

the-art oceanic models over a relevant range of Courant numbers. In

this case, numerical schemes will be studied close to their function-

ing conditions found during realistic simulations.

A first step toward our objective is to determine which terms

are expected to be the most important in terms of stability for a

given target application. Using a scaling analysis, Griffies and Adcroft

(2008) studied the time step constraints introduced by the Coriolis

term, advection, internal gravity wave propagation, as well as bihar-

monic viscosity and harmonic diffusion with respect to the horizon-

tal grid spacing. Their study suggests that the details of the numer-

ical integration schemes must be considered to get a clear estimate

of which process sets the time-step. For the typical resolution of to-

day’s climate models it is unlikely that inertial oscillations or the vis-

cous/diffusive operators will be responsible for the time-step limita-

tion. We, thus, focus our study on three-dimensional advection and

internal gravity waves, assuming that the numerical models under

consideration are discretized on a horizontal C-grid with an Eulerian

vertical coordinate in the primitive equations limit. Moreover, we as-

sume that sea-ice or external gravity waves (through the ”leakage”

of the barotropic mode (e.g. Griffies et al., 2000; Shchepetkin and

McWilliams, 2005; Demange et al., 2014b) ) do not contribute to the

limitation of the maximum allowed time-step. Important notations

used throughout the paper are summarized in Table 1.

1.2. Stability of numerical models

Throughout this paper, x and y are the horizontal directions

aligned with the computational grid, z is the vertical coordinate ori-

ented upward from the topography −hi, j to the free surface ζ i, j. We

note u = (u, v, w) the three-dimensional velocity, w being the dia-

surface velocity, and V the volume of a given grid cell

Vi, j,k = Δxi, j,kΔyi, j,kΔzi, j,k.

To formulate the stability constraint associated with three-

dimensional advection, we need to define the volumetric fluxes

U
i+ 1

2
, j,k

, V
i, j+ 1

2
,k

and W
i, j,k+ 1

2
, respectively in the two horizontal and

vertical direction. Those fluxes are the velocities multiplied by the

area of the corresponding grid cell face, i.e.⎧⎪⎨⎪⎩
Ui+ 1
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Wi, j,k+ 1
2

= Δxi, jΔyi, jwi, j,k+ 1
2

3 The coupled space–time approach is only viable when applied to selected terms in

the equations; e.g. advection, gravity waves or Coriolis considered separately. It is not

applicable to the primitive equations as a whole.
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