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a b s t r a c t

The impact of eddy potential vorticity fluxes on the dynamical evolution of the flow is obscured by the pres-

ence of large and dynamically-inert rotational fluxes. However, the decomposition of eddy potential vorticity

fluxes into rotational and divergent components is non-unique in a bounded domain and requires the impo-

sition of an additional boundary condition. Here it is proposed to invoke a one-to-one correspondence be-

tween divergent eddy potential vorticity fluxes and non-divergent eddy momentum tendencies in the quasi-

geostrophic residual-mean equations in order to select a unique divergent eddy potential vorticity flux. The

divergent eddy potential vorticity flux satisfies a zero tangential component boundary condition. In a simply

connected domain, the resulting divergent eddy potential vorticity flux satisfies a powerful optimality condi-

tion: it is the horizontally oriented divergent flux with minimum L2 norm. Hence there is a well-defined sense

in which this approach removes as much of the dynamically inactive eddy potential vorticity flux as possible,

and extracts an underlying dynamically active divergent eddy potential vorticity flux. It is shown that this

approach leads to a divergent eddy potential vorticity flux which has an intuitive physical interpretation, via

a direct relationship to the resulting forcing of the mean circulation.

© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

The fundamental dynamical equations for the ocean can typi-

cally be cast into a flux form in which changes to physical quan-

tities depend upon the divergence of their flux. This reflects the

existence of integral conservation laws and yields a natural phys-

ical interpretation in terms of the transport of properties such as

heat, salinity, or potential vorticity from one region of the ocean to

another. However, in practice, the direct analysis of the dynamical

impact of oceanic fluxes is often obscured by the existence of large

non-divergent flux components, which necessarily have no direct dy-

namical effect. The general resolution of this issue is through the ap-

plication a Helmholtz decomposition, separating the flux into a diver-

gent component, which is dynamically active, and a non-divergent

component, which is dynamically inert. Unfortunately, this decom-

position is inherently non-unique in bounded domains, and is depen-

dent upon a choice of boundary conditions (Fox-Kemper et al., 2003).

This issue is of particular concern in the analysis and compar-

ison of eddy parameterisations, which typically specify parame-

terised eddy fluxes. For example, the existence of locally up-gradient
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fluxes does not necessarily rule out the application of down-gradient

flux parameterisations – an appropriately defined divergent eddy

flux may be more closely aligned counter to the mean gradients

(e.g. Marshall and Shutts, 1981). Similarly, down-gradient poten-

tial vorticity closures violate momentum conservation constraints in

general (Bretherton, 1966; Marshall et al., 2012), but momentum con-

servation can be restored via the introduction of an appropriate non-

divergent eddy potential vorticity flux (Eden, 2010).

In a domain average sense, eddy potential vorticity fluxes must

be oriented down the mean gradient in order to ensure net genera-

tion of eddy enstrophy, itself required in order to balance small-scale

enstrophy dissipation. However it has long been recognised that this

principle need not hold locally (Harrison, 1978; Holland and Rhines,

1980). Local fluxes of eddy enstrophy permit the eddy potential vor-

ticity flux to be oriented in any direction. In Marshall and Shutts

(1981) eddy fluxes are separated into a component balancing the

mean advection and a residual component. In the barotropic vortic-

ity model of Marshall (1984) it is found that the residual eddy po-

tential vorticity flux thus defined is more strongly aligned with the

mean potential vorticity gradient. The methodology is directly gen-

eralised in Nakamura (1998) and Nakamura and Chao (2002). A re-

lated approach is described in Greatbatch (2001) and Medvedev and

Greatbatch (2004), whereby the eddy fluxes are separated into ad-

vective, diffusive, and rotational fluxes, which are then related to the
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components of the total (mean plus eddy) advective eddy variance

flux in the along and across mean gradient directions. This results in

a decomposition similar to the Temporal Residual Mean I formula-

tion of McDougall and McIntosh (1996) (with the latter replacing the

use of the total advective eddy variance flux with the mean advective

eddy variance flux – see Maddison and Marshall (2013, Appendix B)

for further details). The decomposition of Medvedev and Greatbatch

(2004) is itself generalised in Eden et al. (2007) via the consideration

of higher order eddy budgets.

An alternative approach is to decompose eddy potential vortic-

ity fluxes into rotational and divergent components via the use of

a Helmholtz decomposition (e.g. Lau and Wallace, 1979). In Roberts

and Marshall (2000) ocean eddy fluxes, diagnosed from a primitive

equation model, are decomposed into rotational and divergent com-

ponents via the application of a Helmholtz decomposition, subject to

zero normal divergent flux boundary conditions. The resulting diver-

gent eddy fluxes are in this case found to be rather poorly correlated

with corresponding mean gradients.

Non-uniquness of the Helmholtz decomposition in bounded do-

mains, and consequences for the decomposition of eddy fluxes, is dis-

cussed at length in Fox-Kemper et al. (2003). The zero normal diver-

gent flux boundary condition is only one of countless valid options.

Subject to an alternative choice of boundary conditions it is possible,

in a bounded domain, to extract an eddy flux which has a minimum

norm, or a minimum deviation from the mean gradient (Fox-Kemper

et al., 2003). Without any additional constraints on the problem there

is no way to select a boundary condition from amongst these options.

This article discusses a physically motivated approach for resolv-

ing this ambiguity in the Helmholtz decomposition of eddy poten-

tial vorticity fluxes. Specifically the quasi-geostrophic residual-mean

equations allow the identification of a one-to-one correspondence

between divergent eddy potential vorticity fluxes and non-divergent

eddy momentum tendencies. The definition of the latter leads to an

unambiguous definition of the former, which leads to a unique di-

vergent eddy potential vorticity flux which satisfies a zero tangen-

tial component boundary condition. In a simply connected domain

the resulting divergent eddy potential vorticity flux satisfies a pow-

erful optimality condition: it is the (horizontally oriented) divergent

flux with minimum L2 norm. Hence there is a well-defined sense in

which this approach removes as much of the dynamically inactive

non-divergent eddy potential vorticity flux as possible, and extracts

an underlying dynamically active divergent eddy potential vorticity

flux. It is shown that this approach leads to a divergent eddy poten-

tial vorticity flux which has an intuitive physical interpretation, via a

direct relationship to the resulting forcing of the mean circulation.

The paper proceeds as follows. Section 2 describes the mathe-

matical formulation. The quasi-geostrophic residual-mean equations

are outlined, and the relationship between divergent potential vor-

ticity fluxes and non-divergent momentum tendencies is described.

A stream function tendency, or “force function”, is used to define the

divergent potential vorticity fluxes, and it is shown that in a simply

connected domain the resulting divergent potential vorticity flux

satisfies an optimality property. Resulting divergent eddy potential

vorticity fluxes are diagnosed from a three layer quasi-geostrophic

model in Section 3. The decomposition is compared against the more

conventional use of zero normal divergent potential vorticity flux

boundary conditions, and the utility for the assessment of eddy pa-

rameterisations is considered. The paper concludes in Section 4.

2. Formulation

This section describes the Helmholtz decomposition of arbitrary

potential vorticity fluxes into divergent and non-divergent compo-

nents. Section 2.1 describes the horizontal Helmholtz decomposition,

and discusses the origin of ambiguity in decomposing vector fields

into divergent and rotational components. Section 2.2 introduces the

quasi-geostrophic residual-mean equations, and uses these to the re-

late divergent potential vorticity fluxes to non-divergent momentum

tendencies. In Section 2.3 this relation is used to define a horizon-

tal Helmholtz decomposition for potential vorticity fluxes, by relat-

ing the divergent component of potential vorticity fluxes to stream

function tendencies, or “force functions”, associated with momentum

tendencies. The assertion that the decomposition should be linear de-

fines a unique horizontal Helmholtz decomposition for the eddy po-

tential vorticity flux. Finally in Section 2.4 it is shown that, in a simply

connected domain, the resulting divergent eddy potential vorticity

flux is optimal, in that it is the unique (horizontally aligned) divergent

eddy potential vorticity flux with minimal L2 norm. The resulting di-

agnostic equations for force functions are summarised in Section 2.5.

2.1. Horizontal Helmholtz decomposition

The Helmholtz decomposition of a vector field splits the field into

three components: a divergent component (with zero curl), a rota-

tional component (with zero divergence), and a harmonic component

(with both zero curl and zero divergence). This article considers the

horizontal Helmholtz decomposition which, for a vector field F, takes

the form:

F = ∇H�F + ẑ × ∇H�F + HF , (1)

where �F and �F are two scalar potentials, the divergent component

is ∇H�F, the rotational component is1ẑ × ∇H�F , and the harmonic

component is HF. HF has both zero divergence and zero horizontal

curl, ∇H · HF = (ẑ × ∇H) · HF = 0. ∇H = (∂x, ∂y, 0)T is the horizontal

gradient operator, and (ẑ × ∇H) · ( . . . ) is the horizontal curl operator.

A horizontal Helmholtz decomposition of F can in principle be

performed by solving for the two potentials �F and �F, and then

using these to compute the harmonic residual HF. Taking the diver-

gence and horizontal curl of F leads to two elliptic problems for the

potentials:

∇2
H�F = ∇H · F (2a)

∇2
H�F = (ẑ × ∇H) · F. (2b)

The critical issue here is that no boundary conditions have been

imposed on these problems. The selection of alternative boundary

conditions allows harmonic fields to be exchanged between the di-

vergent, rotational, and harmonic components of the decomposition.

Without the specification of appropriate boundary conditions (e.g. as

discussed in Denaro (2003)) the Helmholtz decomposition of a vector

field is, in a bounded domain, not unique.

2.2. The quasi-geostrophic residual-mean equations

We now explicitly limit consideration to the quasi-geostrophic

equations. A quantity θ is decomposed into a mean component θ and

an eddy component θ ′ = θ − θ .2 The mean quasi-geostrophic mo-

mentum and buoyancy equations are then:

∂t ug + ug · ∇Hug + f0ẑ × uag + βyẑ × ug

= − 1

ρ0

∇H pag + S − u′
g · ∇Hu′

g, (3a)

∂t b + ∇H ·
(
ugb

)
+ wagN2

0 = B − ∇H · u′
gb′, (3b)

where ug is the geostrophic velocity, uag is the horizontal compo-

nent of the ageostrophic velocity, and wag is the vertical component

1 Here the horizontal skew-gradient is equivalent to a three-dimensional curl via

ẑ × ∇H� = −∇H × (� ẑ) = −∇ × (� ẑ), where ∇ is the three-dimensional gradient

operator.
2 It is assumed that ( . . . ) is a linear projection operator which commutes with the

ẑ× operator and with derivatives with respect to space and time. It is further assumed

that f0, βy, ρ0, and N0 have zero eddy component.
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