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a b s t r a c t

A non-hydrostatic shallow-water model is proposed to simulate the wave propagation in situations
where the ratio of the wave length to the water depth is small. It exploits the reduced-size stencil in
the Poisson pressure solver to make the model less expensive in terms of memory and CPU time. We refer
to this new technique as the minimized Poisson equations formulation. In the simplest case when the
method applied to a two-layer model, the new model requires the same computational effort as
depth-integrated non-hydrostatic models, but can provide a much better description of dispersive waves.
To allow an easy implementation of the new method in depth-integrated models, the governing equa-
tions are transformed into a depth-integrated system, in which the velocity difference serves as an extra
variable. The non-hydrostatic shallow-water model with minimized Poisson equations formulation pro-
duces good results in a series of numerical experiments, including a standing wave in a basin, a non-lin-
ear wave test, solitary wave propagation in a channel and a wave propagation over a submerged bar.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In fluid dynamics, dispersion means that waves of different
wavelengths travel at different phase speeds. For surface gravity
waves it plays an important role in wave transformation from deep
water to intermediate water and in wave interactions with an
uneven bottom. In the past decades, significant effort has been
devoted to the development of models that can accurately and effi-
ciently predict free surface wave propagation in a wide range of
water depths (Marshall et al., 1997; Casulli and Stelling, 1998;
Stansby and Zhou, 1998; Nwogu, 1993).

There are two conventional approaches for modeling the dis-
persive effects: the Boussinesq-type approach and non-hydrostatic
models. Boussinesq-type equations (Peregrine, 1967) have pro-
vided a general framework to extend the applicability of depth-
integrated equations into deep water. They are typically based on
shallow water equations and they utilize an expansion in kd (k is
the wave number and d is the water depth).

The range of applicability of the conventional Boussinesq equa-
tions is limited to kd < 0:75, as stated in Madsen et al. (2002,
2003). Substantial effort has been devoted to extending the linear
and nonlinear range of applicability of Boussinesq-type models. As
a result, a number of enhanced and higher-order Boussinesq mod-

els have been developed. For instance, Nwogu (1993) used the
velocity at an arbitrary distance from the still water level as the
velocity variable and made the model applicable up to kd � 3.
Using a fourth-order polynomial, Gobbi et al. (2000) developed a
model which has good linear dispersive accuracy up to kd � 6. A
considerable improvement by Madsen and Sørensen (1992) has
resulted in a formulation including fifth-derivative operators, accu-
rate to extremely deep water (kd � 40). Recently, Lynett and Liu
(2004a) have also proposed a two-layer Boussinesq approach, with
good linear wave characteristics up to kd � 6. They also extended
this approach to multiple layers, and have achieved accurate linear
dispersive properties up to kd � 17 with three layers, up to kd � 30
with four layers, including only third-order spatial derivatives
(Lynett and Liu, 2004b). The principle behind Boussinesq formula-
tions is to incorporate the effects of non-hydrostatic pressure,
while eliminating the vertical coordinate. The high accuracy is at
the expense of the simplicity and efficiency of the model. It results
in a rather complicated system with high-order derivatives, which
requires an equally complex numerical scheme and leads to insta-
bility over complex terrain.

The second approach is the non-hydrostatic models. In the ori-
ginal work of Chorin (1968), the so called ‘projection method’ was
developed to solve the Navier–Stokes equations. The problem-
solving process is split into two steps. In the first step, the velocity
field is calculated by using the momentum equations without
taking the pressure gradient into account. In the second step, the
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projection step, the resulting intermediate velocity field is then
projected onto a divergence-free space by solving a Poisson equa-
tion of the full pressure, which is computationally expensive. To
improve the efficiency of this method in the non-hydrostatic mod-
els, Marshall et al. (1997) and Casulli and Stelling (1998) indepen-
dently proposed an alternative approach in which the pressure is
decomposed into a hydrostatic component and a non-hydrostatic
component. This pressure decomposition method has been suc-
cessfully used in many non-hydrostatic models (such as MITgcm
Marshall et al., 1997, Delft3D Bijvelds, 2003, SUNTANS Fringer
et al., 2006, non-hydrostatic ROMS Kanarska et al., 2007 and
SWASH Zijlema et al., 2011).

However, the implementation of the zero pressure boundary
condition at the free-surface is difficult for a staggered grid where
the pressure is located at the center of the cell. It has been recog-
nized that 10–20 vertical layers are normally required in a stag-
gered grid model to describe wave dispersion characteristics up
to an acceptable level if the hydrostatic assumption is employed
at the top layer (Casulli, 1999). To address the issue mentioned
above, Stelling and Zijlema (2003) developed an efficient and accu-
rate numerical method which utilizes a Keller-box scheme and an
edge-based grid system in the vertical direction. This enables the
non-hydrostatic pressure to be located at the cell faces rather than
at the cell centers. Therefore, the top-layer pressure boundary con-
dition can be assigned exactly without any approximation. Their
model can resolve the frequency dispersion up to an acceptable
level of accuracy with a small number of vertical layers.

Studies show that the dispersion property of non-hydrostatic
models can be improved further by using more layers, without
increasing the order of the spatial derivatives (Stelling and
Zijlema, 2003; Yuan and Wu, 2006). However, the price to pay for
such an improvement is a significant increase in computational
cost, due to the large size of the resulting matrix system that needs
to be solved. With the increasing demands of performing large scale
flow simulations with non-hydrostatic models, improving their
efficiency has become a competitive necessity. One of the promis-
ing directions in non-hydrostatic modeling is the use of a small
number of vertical layers to efficiently and accurately model free-
surface waves (Stelling and Zijlema, 2003; Yuan and Wu, 2004).
Already in 2002, Reeuwijk (2002) proposed a method to improve
the efficiency of non-hydrostatic models in which the number of
pressure layers can be chosen independently from the number of
horizontal velocity layers. A few free parameters were introduced
to express the pressure at the place where the value of pressure is
missing. However, in his model, the horizontal velocities are not
independent variables. It is the summation of the horizontal veloc-
ities within each pressure layer servers as an independent variable
in determining the dispersion relation. Increasing the number of
horizontal momentum layers does not improve the dispersion
accuracy which only depends on the number of pressure layers.
This explains why the wave propagation speed in his computations
is only determined by the number of pressure layers.

A similar idea to that described in Reeuwijk (2002) was recently
presented, Bai and Cheung (2012b) proposed a parameterized non-
hydrostatic pressure distribution to reduce the computational
costs. A free parameter is introduced to express the non-hydro-
static pressure at the mid flow depth in terms of the bottom pres-
sure. With this approximation, the two-layer flow system is
reduced to a hybrid system with a free parameter. The free param-
eter is optimized against the exact linear dispersion relation in the
range of 0 < kd < 3. The computational cost is reduced to the same
cost as that of a one-layer system. However, the accuracy of the
dispersion is only improved slightly. The reason for this is the same
as stated above for Reeuwijk (2002)’s model. Compared to a one-
layer model, the hybrid system does not increase the freedom of
the independent variables in determining the dispersion relation.

In this paper, an alternative approach is introduced to improve
the accuracy of two-layer non-hydrostatic models without losing
performance. It exploits the reduced-size stencil in the pressure
Poisson equation. A simple stencil of the horizontal velocity in
the bottom layer is proposed. With this simplified stencil and
manipulations of the equations in the two bottom layers, the ver-
tical velocity and pressure at the bottom can be eliminated from
the system. The rank of the Poisson equation is reduced. Since most
of the computational effort is devoted to inverting the Poisson
matrix, reducing the dimension of the Poisson matrix leads to less
computational cost.

The new method is referred to as the minimized Poisson equa-
tions formulation. It brings a considerable improvement to the
method described in Stelling and Zijlema (2003). The governing
equations have also been transformed into an equivalent, depth-
integrated system, with the velocity difference as a correction to
the depth-integrated flow. This allows an easy implementation of
the method in depth-integrated models. The depth-integrated for-
mulation is implemented in the newly developed, depth-inte-
grated, two-dimensional, unstructured, non-hydrostatic finite
volume model, H2Ocean (Cui et al., 2010, 2012). For the same com-
putational cost, the new model can achieve much more accurate
linear dispersion than the one-layer model. Several classic test
cases are used to validate the model. It is demonstrated that the
new method leads to a significant reduction of computational
effort, while maintaining high linear dispersion accuracy.

This paper proceeds as follows. In Section 2, the basic governing
equations are presented. In Section 3, the minimized Poisson equa-
tions formulation is introduced. In Section 4, the method is applied
to a two-layer system and is referred to as the reduced two-layer
model. In Section 5, the reduced two-layer model has been trans-
formed to a depth-integrated system to allow an easy implementa-
tion in one-layer non-hydrostatic models. Several test cases are
given in Section 6 to demonstrate the accuracy and efficiency of
the new formulation. Finally, in Section 7 the method is discussed.

2. Governing equations

The governing equations are the Euler equations with the pres-
sure decomposed into hydrostatic (ph) and non-hydrostatic com-
ponents (q) using the notation in Casulli and Stelling (1998).
Only the two-dimensional ðx; zÞ plane is considered here. The con-
tinuity equation and momentum equations are given by:
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where g is the free surface elevation, u and w are the velocities in
Cartesian coordinate system ðx; zÞ; q is the non-hydrostatic pres-
sure, p ¼ ph þ q and ph ¼ q0gðg� zÞ (see Fig. 1).

The kinematic boundary conditions at the free surface and at
the bottom are given by
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w ¼ �u
@d
@x

at z ¼ �dðxÞ ð5Þ

where d is the still water depth. At the water surface, the non-
hydrostatic pressure vanishes, qjz¼g ¼ 0. Integrating Eq. (1) over
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