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a b s t r a c t

An Ensemble Optimal Interpolation (EnOI) system is built to assimilate underwater profiling glider obser-
vations into a West Florida Shelf (WFS) coastal ocean model. The Floating Temporal Window (FTW) tech-
nique is incorporated into the EnOI scheme to generate and update associated ensemble members, which
are directly extracted from the model output states from previous output cycles. The model performance
is validated against independent observations from moorings located near the glider tracks. The EnKF,
traditional EnOI and the FTW-EnOI schemes are compared in terms of error covariance evolution and
model performance at mooring locations. It is found that all three assimilation schemes provide signifi-
cant (2–3 times) better fit to the mooring data compared with the free model run. Although the EnKF
scheme produces the best results, the FTW-EnOI should be considered as an alternative method given
the low computational cost and the flow-dependent information embedded in the algorithm.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Both ocean models and observations are important sources for
oceanographic research. A perfect ocean model, however, does
not exist because models are built on various assumptions, use
parameterizations of unknown processes and depend on boundary
and initial conditions. Ocean observations, on the other hand, are
generally sparse in time and space even if they can accurately
represent nature. Therefore, a combination of models and observa-
tions provides a reasonable strategy for describing ocean pro-
cesses. With the goal of coordinating observations with models,
the Coastal Ocean Monitoring and Prediction System (COMPS) con-
stantly evolves over the years (e.g. Weisberg et al., 2005, 2009) on
the West Florida Shelf (WFS). Here we describe recent work toward
adding data assimilation to the COMPS WFS coastal ocean model.

The WFS is a broad continental shelf with a gentle slope
(Fig. 1(a)). The geometry of the WFS becomes complex due to the
decreasing shelf width near the DeSoto Canyon to the northwest,
and the barrier of the Florida Key to the south. The WFS circulation
is driven by tides, winds, and buoyancy fluxes (e.g. He and
Weisberg, 2002; Weisberg et al., 2005; Liu and Weisberg, 2012).
Together with the varying topography and the local forcing, the
inner shelf becomes a dynamically complex area with the interac-
tion between surface and bottom Ekman layers, and geostrophic

interior flow (Weisberg et al., 2005; Liu and Weisberg, 2007;
Weisberg et al., 2009). Outside the shelf break, the Gulf of Mexico
Loop Current (LC) can sometimes broach the shelf break and fur-
ther complicates the dynamics and water properties of the inner
shelf (e.g. Huh et al., 1981; He and Weisberg, 2003; Weisberg
and He, 2003). Although inner shelf observations suggest a sea-
sonal cycle of upwelling circulation in winter and downwelling cir-
culation in summer, synoptic weather fronts affect the inner shelf
circulation from time to time, adding complexity to the local water
properties (Weisberg et al., 2005).

Because of the dynamical complexity at coastal regions, coastal
ocean models inevitably contain forecast uncertainty. To reduce
the forecast uncertainty, we need data assimilation systems to con-
strain the models with coastal observations. Yet it is difficult to
apply a data assimilation system to a dynamically complicated
area like the WFS. Take the Ensemble Kalman Filter (EnKF) for
example. The EnKF has been a popular data assimilation method
since Evensen (1994) introduced it to a quasi-geostrophic model.
The EnKF gives rise to many ‘‘Kalman Filter family members’’, such
as the Ensemble Transform Kalman Filter (ETKF, Bishop and Toth,
1999), the Ensemble Square Root Filters (ESRFs, Tippett et al.,
2003) and the Deterministic Ensemble Kalman Filter (DEnKF,
Sakov and Oke, 2008). The EnKF algorithm is known to be able to
generate flow-dependent and location-dependent background
error covariances (e.g. Hamill et al., 2003; Wang et al., 2007;
Counillon and Bertino, 2009). The EnKF, however, relies on the
dynamic model to generate a state-dependent estimate of the
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model error, or the model error covariance. It is unlikely for the
EnKF to estimate the correct model error if the model cannot
resolve the physical process that is being studied. Therefore, the
sophisticated dynamics of the WFS increases the difficulty of the
model forecast, and hence the difficulty of the application of the
EnKF to the area.

Although EnKF has been one of the major data assimilation
schemes in many oceanographic institutions, practical problems
still exist for real ocean applications. For example, the computa-
tional cost of applying EnKF is high. It is known that to generate
an EnKF ensemble with an ensemble size of Ne, one has to run
the model Ne times. Hence, the computational cost of EnKF linearly
increases with the size of ensemble, which is untenable when a
large ensemble size is used on limited computer resources.
Another problem is that the forecast ensemble in the EnKF scheme
tends to collapse over time. In another word, the ensemble spread,
defined as the standard deviation with respect to the ensemble
mean, gradually shrinks with time and the model errors keep being
underestimated at each assimilation cycle. It follows that the filter
puts too much weight on the model and ignores the observations
over time. Several solutions have been proposed to avoid ensemble
collapse. Anderson and Anderson (1999) suggested that inflating
forecast ensemble anomalies by a small amount can effectively
increase ensemble spread at each assimilation cycle. Hamill and
Snyder (2000) proposed a hybrid 3DVAR-EnKF scheme, which adds
static covariance to ensemble error covariance and thereby avoid-
ing ensemble collapse. Similar hybrid schemes have become more
and more popular in the last decade (e.g. Wang et al., 2007;
Counillon et al., 2009; Yaremchuk et al., 2011). Another solution
to reduce ensemble collapse is covariance localization, which was
proposed by Houtekamer and Mitchell (2001) and further dis-
cussed by Hamill et al. (2001) and Sakov and Bertino (2011). The
covariance localization is a procedure where the covariance is mul-
tiplied point-by-point with a fifth-order function (Gaspari and
Cohn, 1999) which is 1 at the observation point and gradually
decreases to 0 when a certain distance is reached. The covariance
localization not only effectively reduces spurious long-range
covariances when a small ensemble is used (Hamill et al., 2001;
Houtekamer and Mitchell, 2001), but also increases the rank of
the forecast covariance (Oke et al., 2007), resulting in analysis
fields that are better fit to the observations.

A simplified version of the EnKF is the Ensemble Optimal
Interpolation (EnOI, Oke et al., 2002, 2005; Evensen, 2003), in
which a flow-dependent ensemble is replaced with a static

ensemble. That is, the background error covariance is estimated
from a prescribed static ensemble and does not change with time.
Because the EnOI requires only a single model run and has no risk
of ensemble collapse, it became very popular in many operational
ocean forecasting systems like the Bluelink Ocean Data Assimila-
tion System (BODAS) at the Bureau of Meteorology (BOM) in
Australia (Oke et al., 2008), and the Navy Coupled Ocean Data
Assimilation (NCODA) system at Naval Research Laboratory
(NRL) in the United States (Cummings, 2005). The disadvantage
of EnOI is that the flow-dependent information of the model is
not blended into the forecast error covariance, hence the EnOI
scheme may miss critical physical information provided by the
model.

Recently, Yaremchuk et al. (2011) proposed a hybrid Three
Dimensional Variational Data Assimilation (3D-VAR) scheme to
assimilate subsurface glider observations into the Navy Coastal
Ocean Model (NCOM). In this scheme, the hybrid background error
covariance is composed of a static part and a flow-dependent part,
whose magnitudes are controlled by a dynamical coefficient. The
static part of the hybrid background error covariance is a near-
Gaussian function modeled by propagating the diffusion equation.
The flow-dependent part is estimated directly from the ensemble
of model forecast states, which is similar to EnKF, except that the
ensemble is sequential instead of parallel. The application of the
hybrid scheme in both twin data experiments and real data exper-
iments resulted in more improvements compared with pure 3D-
VAR scheme. Pan et al. (2011) updated the hybrid scheme by add-
ing a ‘‘Floating Temporal Window’’ (FTW) which extracts ensemble
members from previous model output states. The FTW technique
resolves physical processes caused by rapid changes in external
forcing by controlling the appropriate temporal resolution of the
ensemble. Yin et al. (2011) also used the FTW approach to generate
and update ensembles in the Predictive Ocean Atmosphere Model
for Australia (POAMA) EnKF system.

The FTW enables the possibility of incorporating flow-depen-
dent information into the EnOI system. In the present paper, we
present a FTW-EnOI system. It is very similar to the traditional
EnOI scheme, with the exception of ensemble generation and
update. We will compare the FTW-EnOI scheme with both the
EnKF and the traditional EnOI. We will show that the FTW-EnOI
is capable of producing flow-dependent error covariance, and has
the virtues of low computational cost and countering ensemble
collapse. The FTW-EnOI can be used as an alternative method of
the EnKF when computational resources are limited.

Fig. 1. (a) The WFS coastal ocean model domain and bathymetry of WFS. The purple, yellow and green dots are locations of mooring C10, C12 and C14. The black lines on (a)
are locations of glider observations. The area in white rectangular is magnified in (b). The red track in (b) is the trajectory of glider moving offshore from April 20 to April 26,
2010. The green track in (b) is the trajectory of glider moving onshore from April 26 to May 4. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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