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a b s t r a c t

An optimisation scheme is developed to accurately represent the sub-grid scale forcing of a high dimen-
sional chaotic ocean system. Using a simple parameterisation scheme, the velocity components of a
30 km resolution shallow water ocean model are optimised to have the same climatological mean and
variance as that of a less viscous 7.5 km resolution model. The 5 day lag-covariance is also optimised,
leading to a more accurate estimate of the high resolution response to forcing using the low resolution
model.

The system considered is an idealised barotropic double gyre that is chaotic at both resolutions. Using
the optimisation scheme, we find and apply the constant in time, but spatially varying, forcing term that
is equal to the time integrated forcing of the sub-grid scale eddies. A linear stochastic term, independent
of the large-scale flow, with no spatial correlation but a spatially varying amplitude and time scale is used
to represent the transient eddies. The climatological mean, variance and 5 day lag-covariance of the
velocity from a single high resolution integration is used to provide an optimisation target. No other high
resolution statistics are required. Additional programming effort, for example to build a tangent linear or
adjoint model, is not required either.

The focus of this paper is on the optimisation scheme and the accuracy of the optimised flow. However
the forcing can provide insights in the design of deterministic and stochastic parameterisations. In the
present study, we found that the stochastic parameterisation correcting the model variance is associated
with the spatial pattern of eddy-decorrelation timescales rather than the spatial pattern of the amplitude
of the variance. The method can be applied in future investigations into the physical processes that
govern barotropic turbulence and it can perhaps be applied to help understand and correct biases in
the mean and variance of a more realistic coarse or eddy-permitting ocean model. The method is
complementary to current parameterisations and can be applied at the same time without modification.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the limitations of finite computational power, current
numerical methods are not capable of accurately resolving the
ocean circulation down to the viscous scale. Since there exists no
universal sub-grid scale turbulence model that can close for all
unresolved quantities (Reynolds stresses, turbulent fluxes, etc.)
ad hoc representations are required, and state of the art numerical
models exhibit serious differences and inaccuracies in their
climatologies (e.g. Flato et al. (2013, Section 9.4.2)). The simplest
approach to parameterise sub-grid scale processes is to dissipate
any small-scale motion while simultaneously stabilising the
model. This is typically achieved by employing an eddy diffusivity

designed, for example, to improve spectral characteristics near the
grid-scale (e.g. Smagorinsky (1963), Leith (1967)), or by using a dif-
fusive integration scheme (e.g. Ritchie (1988)). Another approach is
to mimic the physical processes in the real ocean. For example,
mesoscale eddies in the ocean interior tend to rearrange fluid par-
cels along isopycnals (constant density surfaces) which leads to the
widely implemented Gent–McWilliams parameterisation scheme
in the tracer equations (Gent et al., 1990). Such approaches to find
the sub-grid momentum or buoyancy forcing are often based upon
the time-mean effect of the sub-grid scale forcing upon the large
scale flow as diagnosed by comparing a low resolution model with
measurements, or a high resolution integration. The approximate
functional form of the sub-grid momentum or buoyancy forcing
in terms of the grid scale flow of a turbulent system may be found
using high resolution integrations (e.g. Achatz and Branstator
(1999)), using, for example, a polynomial fit. A stochastic term
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may be used to represent the fit residual (e.g. Wilks (2005),
Frederiksen and Kepert (2006), Zidikheri and Frederiksen (2009),
Kitsios et al. (2013), Arnold et al. (2013)) or realistic variance
(e.g. Hasselmann (1976), Buizza et al. (1999), Palmer (2001),
Berloff (2005)). The deterministic and stochastic sub-grid forcing
can be derived from theoretical considerations (e.g. Kraichnan
(1959), Herring and Kraichnan (1972), Frederiksen and Davies
(1997), Holm et al. (1999), Marshall et al. (2012), Grooms and
Majda (2013), Mana and Zanna (2014)), although such an approach
can be practically difficult to implement (Foias� et al., 2001; Mana
and Zanna, 2014).

In many cases one or more parameters that govern the strength
of these schemes must be chosen with limited guidance from the-
ory. Trial and error comparison of model output, as a function of
parameter values, with ocean data, is one method often referred
to as ‘‘tuning’’. Tuning up to around five or six parameters is possi-
ble in principle with a simple parameter search, however larger
numbers of parameters require an ‘‘expert’’ opinion, independence
from each other, or an acceptance that the optimal values will not
be found. The problem is that to explore each direction of a
parameter space of dimensionality d across n different climatolo-
gies requires nd points to be evaluated. Given a high (d� 5)
dimensional vector p of parameters, evaluation of the entire
parameter space is not practical and in order to optimise anything
we are forced to define an objective target to optimise for, or in
other words a cost function GðpÞ to minimise. From an initial guess
p0 a direction to change p may be given by the gradient of the cost
function

p1 ¼ p0 �
@GðpÞ
@p

����
p¼p0

dp: ð1Þ

Here p1 is an improved estimate of the optimal parameters in com-
parison with p0 and dp is a small positive constant with the appro-
priate units. The process can be iterated until no further
optimisation is possible. Accurate estimation of @G=@p can be diffi-
cult, requiring for example tangent linear and adjoint models to be
integrated. Implementation of adjoint models for ocean circulation
problems has been achieved for sensitivity analysis and data assim-
ilation capabilities (e.g. Marotzke et al. (1999), Moore et al. (2004))
as has optimisation of the eddy-buoyancy sub-grid parameters from
the climatological mean state (Ferreira et al., 2005). However there
are still some unresolved issues for large-scale chaotic systems.
Firstly the programming effort is substantial leading to the develop-
ment of semi-automatic differentiation packages for this purpose
(e.g. Giering (1999), Heimbach et al. (2005)). Secondly if a system
has a stochastic element the problem of optimising stochastic
parameterisation has not, to the author’s knowledge, been consid-
ered. Finally, although the adjoint approach is useful for short time
optimisation in ocean (e.g. Gebbie et al. (2006), Mazloff et al. (2010),
Balmaseda et al. (2013)) and atmosphere (e.g. Kalnay et al. (1996),
Dee et al. (2011)) state estimation, it is not currently capable of
optimising for the long time climate averages of a chaotic system
(e.g. Lea et al. (2000), Eyink et al. (2004)) and approximations are
required. Some attempts to solve this problem in a slightly different
context include the methods of Abramov and Majda (2009) applied
to climate response, who use the full non-linear model for the short
time gradient estimate and a Gaussian model approximation for
longer times, and Wang et al. (2014) who uses a modified adjoint
algorithm to stabilise the gradient estimation algorithm.
Fortunately an estimate of @G=@p does not need to be particularly
accurate for the purposes of optimisation. It is merely required to
follow a trajectory in parameter space that eventually leads toward
the optimum and to tend to zero as the optimum is approached.
Therefore we have the opportunity to optimise with a much simpler
criteria if a very approximate direction of @G=@p can be found. This

is the approach of the present paper. In our case, with the climate
change problem in mind, the goal is accurate optimisation of the cli-
matological mean and variance and approximate optimisation of
the response of the system to a forcing, using a ‘‘truth’’ as the opti-
misation target.

1.1. The mean

Current state of the art ocean models exhibit a different cli-
matological mean state to that observed in the real ocean (Flato
et al., 2013). For example, the poor representation of eddy-mean
flow processes leads to unrealistic western boundary currents
(Gulf Stream and Kuroshio) responsible for large sea surface tem-
perature biases (Large and Danabasoglu, 2006). Their predictions
are therefore approximations about a different climatological
mean point in state space to that of reality. To account for such
deviations from the observed climatology, post integration bias
correction is sometimes applied (e.g. Stockdale (1997)). A more
accurate approach would be to have a model that has the correct
climatological mean state in the first place. This can be achieved
for example by adding a spatially varying, but constant in time,
parameter to the right hand side of the governing equations
(Achatz and Branstator, 1999). This spatially-varying time-
independent parameter represents the contribution to the cli-
matological mean of all of the sub-grid processes that are not
included in the basic low resolution model minus any biases intro-
duced by incorrect additional terms, such as high viscosity. The
size of the improvement in accuracy relative to post integration
bias correction can be important. For example, in a coupled
ocean–atmosphere model some studies suggest that the mean
location of the ocean boundary currents have an important impact
upon atmospheric dynamics (e.g. Kirtman and Vecchi (2011),
Scaife et al. (2011)). The ocean bias therefore has the potential to
cause atmospheric bias that may be difficult to correct post
integration.

1.2. The variance

Often, due to artificially high viscosity in a dynamical ocean
model and the lack of sub-grid variability, the variance of the prog-
nostic variables is underestimated. Without a time dependent
external forcing such as the seasonal cycle, one can often obtain
a steady state in very low-resolution ocean models, where time
derivatives of all prognostic variables are equal to zero. In non-
eddying ocean models, any effect of the variance due to eddies is
therefore reduced or missing. The fluctuations brought about by
resolving the eddies in an ocean model can potentially lead to
additional dynamical regimes being explored (e.g. Palmer (2001),
Palmer and Weisheimer (2011)) and important processes such as
eddy saturation (Straub, 1993; Munday et al., 2013) or jet rectifica-
tion (Berloff, 2005; Waterman et al., 2012; Waterman and Hoskins,
2013). In addition, the lack of variance between the members of an
ensemble of model integrations contributes to over confidence, in a
statistical sense, in model predictions. For these reasons we con-
sider it desirable for our model climatological variance, and hence
the turbulent eddy kinetic energy, to be as close as possible to the
measured ocean variance. Moreover, since the correlations of a tur-
bulent system decay in time, we would like the correlations of any
parameterised source of variance to also decay after some time.
The simplest approach is to add a stochastic term, with a spatially
varying amplitude and time scale, to the right hand side of the gov-
erning equations. In this paper we require that the parameters gov-
erning such a process ensure that the model’s climatological
variance is as accurate as possible, relative to the ‘‘truth’’.
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