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a b s t r a c t

Through the use of Boussinesq scaling we develop and test a model for resolving non-hydrostatic pres-
sure profiles in nonlinear wave systems over varying bathymetry. A Green–Nagdhi type polynomial
expansion is used to resolve the pressure profile along the vertical axis, this is then inserted into the
pressure-Poisson equation, retaining terms up to a prescribed order and solved using a weighted residual
approach. The model shows rapid convergence properties with increasing order of polynomial expansion
which can be greatly improved through the application of asymptotic rearrangement. Models of
Boussinesq scaling of the fully nonlinear Oðl2Þ and weakly nonlinear OðlNÞ are presented, the analytical
and numerical properties of Oðl2Þ and Oðl4Þ models are discussed. Optimal basis functions in the
Green–Nagdhi expansion are determined through manipulation of the free-parameters which arise due
to the Boussinesq scaling. The optimal Oðl2Þ model has dispersion accuracy equivalent to a Padé [2,2]
approximation with one extra free-parameter. The optimal Oðl4Þ model obtains dispersion accuracy
equivalent to a Padé [4,4] approximation with two free-parameters which can be used to optimize shoal-
ing or nonlinear properties. In comparison to experimental results the Oðl4Þ model shows excellent
agreement to experimental data.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Boussinesq type models have been used to make numerical pre-
dictions about nearshore wave phenomenon since their introduc-
tion by Peregrine (1967) and Madsen and Mei (1969). Through
the use of a Boussinesq-type nondimensional scaling approach it
was possible to design a relatively simple model which was appli-
cable for shallow water waves, l ¼ kh 6 p=2. Early models were
weakly dispersive and weakly nonlinear, limiting their applicability
in deeper water. Work by Madsen et al. (1991), Madsen and Srensen
(1992) and Nwogu (1993) demonstrated that with careful manipu-
lation of the equations it was possible to generate models with bet-
ter dispersion characteristics, formally up to Oðl4Þ. Further work
incorporated higher-order solutions with increased accuracy in
shoaling and nonlinear interactions (Agnon et al., 1999; Kennedy
et al., 2001; Schäffer and Madsen, 1995; Wei et al., 1995) and more
relevant physics to the nearshore such as wave breaking and wave
run-up (Chen et al., 2000; Kennedy et al., 2000; Lynett et al., 2002;
Schäffer et al., 1993). The work of Gobbi and Kirby (2001), Gobbi

et al. (2000) and Madsen and Schäffer (1998) extended the order
of accuracy of the models, obtaining a dispersive relationship that
was formally of Oðl8Þ, thereby expanding the range over which
valid solutions could be obtained. Taking a different approach,
Lynett and Liu (2004a,b) examined the increased accuracy gained
through solutions to Boussinesq models over multiple vertical lay-
ers. The use of multiple layers provided an increase in the number
of free-parameters which could be used to improve the model accu-
racy. Building on the advances made in Serre–Green–Nagdhi type
modeling of water waves (Bonneton et al., 2011; Green and
Naghdi, 1976; Serre, 1953), Zhang et al. (2013, 2014) were able to
obtain an equivalent formal high-order of accuracy, even for low-
order models, through the use of Green–Naghdi type polynomial
expansions over the vertical domain for the velocities and the use
of asymptotic rearrangement to find the optimal vertical basis
functions.

Many of the higher-order models came at the cost of model com-
plexity, which in many cases hindered the potential for these mod-
els to be adopted on a large scale. With the exception of Zhang et al.
(2013), in order to obtain formally higher-order models it was nec-
essary to use higher order spatial derivatives, which increases the
computational cost. In addition mixed space/time derivatives are
inherent in Boussinesq type models, see Peregrine (1967). Mixed
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space/time can be computationally expensive and difficult to
implement, especially in two horizontal dimensions.

Wei and Kirby (1995) suggested the use of a higher-order
Adams–Bashforth–Moulton predictor–corrector time integration
scheme, thus ensuring that the dispersive error dominated the
truncation error in the temporal discretization. Following their
work and owing to the potential for greater spatial accuracy for
lower computational cost hybrid spatial finite volume finite differ-
ence (Erduran et al., 2005; Shi et al., 2012; Gallerano et al., 2014)
and finite element (Do Carmo et al., 1993; Li et al., 1999; Panda
et al., 2014) implementations of the Boussinesq equations have
been developed, these methods either employed higher-order
predictor–corrector methods in time or took advantage of
higher-order Runge–Kutta (RK) or Strong-Stability-Preserving-
Runge–Kutta (SSPRK) methods in time. Furthermore, rearrange-
ment of the dispersive terms such that the numerical solution of
the one horizontal dimension model only requires the solution of
a tridiagonal system addressed the computational cost issue
associated with mixed space/time derivatives. However, in two
horizontal dimensions it is still necessary to solve a set of two
tightly coupled systems of equations.

Recently focus has shifted towards resolution of the dispersive
terms through the solution of the Poisson type problems. This
approach reduces the system to only one unknown, the pressure
profile, in two-horizontal dimensions, as opposed to a set of two
coupled velocity problems. A novel approach has been introduced
by Antuono and Brocchini (2013) which focuses on solutions to a
Poisson equation in the vertical velocity. This is achieved through
a decomposition of the horizontal velocities into two parts, a
depth-averaged velocity component and a deviation from depth-
averaged term. The latter is further decomposed into rotational
and irrotational components. Manipulation of the vorticity equa-
tions and the continuity equation yields a Poisson type problem,
which when solved informs the deviation of the horizontal velocity
from the depth-averaged component.

An approach that has recently gained traction is the resolution
of dispersive effects by focusing on the non-hydrostatic pressure
term. Building upon the concept introduced by Casulli and
Stelling (1998), Casulli (1999) and Stansby and Zhou (1998) many
highly accurate models have been developed and tested. Examples
include the work of Yamazaki et al. (2009) on a depth integrated
non-hydrostatic model, the Simulating WAves till SHore (SWASH)
model developed by Stelling and Zijlema (2003), Zijlema and
Stelling (2008) and Zijlema et al. (2011), the Non Hydrostatic
WAVE (NHWAVE) model developed by Ma et al. (2012) and the
CCHE2D model of Wei and Jia (2013). Each of these models have
focused on solutions to the shallow water equations (SWE) or full
Navier–Stokes equations where the non-hydrostatic pressure is
treated as a single unknown which must be found numerically.
The result is a model that does not include any mixed space/time
derivatives, they do however involve an extra pressure-Poisson
problem which must be solved to determine the non-hydrostatic
pressure.

Zijlema and Stelling (2005) were able to demonstrate numeri-
cally that with an increased number of vertical layers it was possi-
ble to obtain high order accuracy for the dispersion characteristics.
More recently Bai and Cheung (2013) derived the dispersion
relationship and shoaling coefficient for the single and two layer
models, as well as a more accurate hybrid single layer model.
The results of the linear dispersion analysis for the single layer
showed that it was only accurate for very shallow water waves.
The more expensive two layer model demonstrated a significant
improvement, equivalent to a Padé [2,4] approximation to the
Airy solution, while the single layer hybrid model contained a
free-parameter that could be used to optimize the dispersion to a
Padé [2,2] approximation.

A separate approach based on an extension of the SWE’s to
include dispersive effects while retaining their hyberbolic struc-
ture has been proposed by Antuono et al. (2009). Assuming a suf-
ficiently smooth bathymetry these so called Dispersive Nonlinear
Shallow Water Equations (DNSWE’s) are able to remain strictly
hyperbolic through the inclusion of two pseudo-potential func-
tions, thus they can take advantage of higher order finite volume
or finite element numerical methods (Grosso et al., 2010).

The coupling of Boussinesq-type models with oceanographic
models was stated as improvement of high urgency by Brocchini
(2013) in his comprehensive analysis of the current state of Bous-
sinesq models. The present work aims to take the advances made
in classical Boussinesq theory and the recent work in multi-layer
non hydrostatic pressure models to design a Boussinesq type model
for the non-hydrostatic pressure which is suitable for a straightfor-
ward coupling with oceanographic models. Instead of vertical lay-
ers, a Green–Nagdhi type polynomial expansion is used to resolve
the pressure over the vertical domain. The result is a simple model
for the non-hydrostatic pressure, which is found through the
solution to the pressure-Poisson equation and enforcement of the
bottom boundary condition on pressure. The combination of a
Green–Nagdhi type polynomial expansion with Boussinesq-type
scaling provides free-parameters, which can be manipulated using
the principles of asymptotic rearrangement to optimize for various
properties including dispersion, shoaling and nonlinear interac-
tions. At lowest-order the model is comparable to standard
Boussinesq models as well as the hybrid single layer model of Bai
and Cheung (2013) At higher-order the model compares well with
the higher order models of Gobbi and Kirby (1999) and Zhang et al.
(2013), but is relatively easier to implement and does not contain
higher-order spatial derivatives or mixed space/time derivatives.

This paper is organized as follows: Section 2 introduces the
dimensionless scaling and the governing equations for the model.
In Section 3 a pressure-Poisson model using Boussinesq scaling
and Green–Nagdhi type expansions in the vertical axis is devel-
oped. Section 4 discusses the analytical properties of the model
and compares them with well known analytical results. Section 5
discusses several validation experiments conducted using a
numerical solution to the model. Finally the conclusions of the
paper are given in Section 6. Appendix A provides details of reduc-
tion in the degrees of freedom for higher order solutions, appendix
B provides details of the linear dispersion and shoaling analysis
and appendix C provides details of the nonlinear analysis for the
second order nonlinear term.

2. Scaling

For the present study we will consider flow of a constant den-
sity inviscid fluid without bottom or surface shear stresses. We
employ a Cartesian coordinate system ðx�; y�; z�Þ, where z� repre-
sents the vertical axis centred on the still-water plane pointing
upwards. The full vertical profile stretches from the bottom
bathymetry at z� ¼ �h�ðx�; y�Þ to the free-surface z� ¼ g�ðx�; y�; t�Þ.
The following nondimensional quantities are defined:

ðx; yÞ ¼ k0ðx�; y�Þ; ðu;vÞ ¼ h0

a0

ffiffiffiffiffiffiffiffiffiffi
g0h0

p ðu�;v�Þ;

g ¼ g�

a0
; z ¼ z�

h0
;

w ¼ w�

a0k0

ffiffiffiffiffiffiffiffiffiffi
g0h0

p ; P ¼ P�

qg0a0
;

h ¼ h�

h0
; g ¼ g�

g0
;

t ¼ k0

ffiffiffiffiffiffiffiffiffiffi
g0h0

q
t�;

ð1Þ
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