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28Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean
29biogeochemical model to estimate air–sea carbon fluxes (FCO2) and partial pressure of carbon dioxide
30(pCO2) in the global oceans. Global air–sea carbon fluxes and pCO2 were relatively insensitive to the
31choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanal-
32yses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited
33statistically significant positive correlations with in situ estimates across the 12 major oceanographic
34basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at
350.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin
36estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in
37estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were
38muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major
39oceanographic basins. The results provide information on the characterization of uncertainty in ocean
40carbon models due to choice of reanalysis forcing.
41Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
42licenses/by/3.0/).

43

44

45 1. Introduction

46 The oceans play a critical role in the global carbon cycle. More
47 than 90% of the active non-geological carbon pool resides in the
48 oceans (Kaufman et al., 1998). Estimates of global primary produc-
49 tion suggest that the oceans contribute about half (Field et al.,
50 1998). One quarter (Le Quéré et al., 2010) of the carbon emitted
51 by anthropogenic sources is thought to be sequestered in the
52 oceans, annually. Understanding the role of the ocean in the global
53 carbon cycle is a driving question in modern Earth science. It
54 requires foremost a geographically-distributed, well-maintained
55 observational capability. We are fortunate that such a capability
56 exists or is in development, and that global data sets of ocean car-
57 bon inventories (Key et al., 2004), partial pressure of CO2

58 (Takahashi et al., 2006, 2009) and ocean-atmospheric exchange
59 (Takahashi et al., 2006, 2009) are publicly available.
60 Global ocean carbon models require external information to
61 drive the ocean circulation dynamics that determine the
62 distributions, abundances, and atmospheric exchange of carbon.

63Additionally, biological and chemical constituents that play impor-
64tant roles in the ocean carbon cycle are affected by ocean circula-
65tion. These forcing fields can be from a coupled atmosphere
66model or from atmospheric and ocean data. In the latter case, the
67data typically come from publicly available reanalysis products
68(e.g., Le Quéré et al., 2010; Gorgues et al., 2010; Doney et al.,
692009). It is clear that different ocean models produce different esti-
70mates of air–sea fluxes (Khatiwala et al., 2013), but less effort has
71been given to the influences of different reanalysis products. These
72differences in reanalysis products and their potential effects on
73simulated ocean carbon distributions and trends have been cause
74for concern by ocean modelers (Le Quéré et al., 2010).
75Here we intercompare model air–sea flux estimates and partial
76pressure of carbon dioxide (pCO2) from a model forced by four
77reanalysis products. These include The Modern-Era Retrospective
78analysis for Research and Applications (MERRA; Rienecker et al.,
792011), two from the National Center for Environmental Prediction
80(NCEP): NCEP2 (Kanamitsu et al., 2002) and NCEP1 (Kalnay et al.,
811996), and one from the European Centre for Medium-range
82Weather Forecasts (ECMWF; Dee et al., 2011). This study provides
83an opportunity to evaluate how the differences in reanalysis prod-
84ucts propagate through the same ocean biogeochemical model to
85affect representations of carbon fluxes and pCO2.
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86 This effort is potentially important not only to ocean carbon
87 modelers, but also for reanalysis developers and analysts, satellite
88 mission conceptual designers, and atmospheric scientists as well.
89 The objective of this study is to provide quantitative information
90 on the spatial distributions of air–sea carbon fluxes and ocean
91 pCO2 globally, regionally, and sub-regionally in a model forced
92 by the four state-of-the-art, widely used reanalysis products listed
93 above. Such information can guide scientists and analysts in their
94 selection, uses, and potential pitfalls of different reanalysis prod-
95 ucts in the context of ocean carbon models.

96 2. Material and methods

97 2.1. Global three-dimensional circulation model

98 Global ocean carbon dynamics are simulated by the NASA Ocean
99 Biogeochemical Model (NOBM; Fig. 1). It is a three-dimensional

100 representation of coupled circulation/biogeochemical/radiative
101 processes in the global oceans (Gregg et al., 2003; Gregg and
102 Casey, 2007). It spans the domain from 84�S to 72�N latitude in
103 increments of 1.25� longitude by 2/3� latitude, including only open
104 ocean areas, where bottom depth > 200 m. The circulation model is
105 quasi-isopycnal, with 14 vertical layers, driven by the forcing fields
106 shown in Fig. 1 (Schopf and Loughe, 1995). It relaxes to sea surface
107 temperature obtained from MERRA and surface salinity obtained
108 from the National Oceanographic Data Center (NODC, Conkright
109 et al., 2002). The biogeochemical processes model contains 4 phyto-
110 plankton groups, 4 nutrient groups, a single herbivore group, and 3
111 detrital pools. The phytoplankton groups differ in maximum
112 growth rates, sinking rates, nutrient requirements, and optical
113 properties. The 4 nutrients are nitrate, regenerated ammonium, sil-
114 ica to regulate diatom growth, and iron. Three detrital pools provide
115 storage of organic material, sinking, and eventual remineralization.
116 Carbon cycling involves dissolved organic carbon (DOC) and
117 dissolved inorganic carbon (DIC; Fig. 2). DOC has sources from phy-
118 toplankton, herbivores, and carbon detritus, and a sink to DIC. DIC
119 has sources from phytoplankton, herbivores, carbon detritus, and
120 DOC, and is allowed to exchange with the atmosphere, which can
121 be either a source or sink. The ecosystem sink for DIC is phyto-
122 plankton, through photosynthesis. This represents the biological
123 pump portion of the carbon dynamics. The solubility pump portion
124 is represented by the interactions among temperature, alkalinity
125 (parameterized as a function of salinity), silica, and phosphate
126 (parameterized as a function of nitrate). The alkalinity/salinity
127 parameterization utilizes the spatial variability of salinity in the
128 model adjusted to mean alkalinity

129
TA ¼ TA S=S 131131

132where TA is total alkalinity and S is salinity. The underscore repre-
133sents global mean values. TA is specified as 2310 lE kg�1 (Ocean
134Model Intercomparison Project (OCMIP; www.ipsl.jussieu.fr/
135OCMIP) and S as 34.8 PSU (global model mean). Since the model
136contains nitrate but not phosphate, we estimate phosphate by mul-
137tiplying nitrate by 0.1. This is derived from the global mean ratio of
138nitrate to phosphate from NODC for their top three standard levels.
139The calculations for the solubility pump follow the standards set by
140the Ocean Model Intercomparison Project (reference above). We
141recognize that this approximation for alkalinity is not optimal, but
142the surface results compare favorably with data (see Gregg et al.,
1432013). The difference between the model and GLODAP global sur-
144face alkalinity is 2.7 lEq l�1 (=0.1%) with basin correlation of 0.95
145(P < 0.05) (Gregg et al., 2013). We consider this sufficient for the
146present purpose of intercomparing model results from forcing by
147different reanalysis products.
148We employ a locally-developed lookup table valid over modern
149ranges of DIC, salinity, temperature, and nutrients for computa-
150tional efficiency, at little cost to accuracy. Air–sea CO2 exchange
151as a function of wind uses the Wanninkhof (1992) formulation,
152as is common in global and regional ocean carbon models (e.g.,
153McKinley et al., 2006). A more complete description of NOBM
154can be found in Gregg et al. (2013).
155NOBM is spun-up for 200 years under climatological forcing
156from each reanalysis. Initial conditions for DIC are derived from
157the Global Data Analysis Project (GLODAP; Key et al., 2004). DOC
158initial conditions are set to 0 lM. Subsequent tests with non-zero
159DOC initial conditions showed negligible differences. Other initial
160conditions are described in Gregg and Casey (2007). For MERRA
161forcing, the first ten years of the run show a net pCO2 difference
162DpCO2 (year 10-year 1) of �0.982 latm, at the first hundred years
163the 10-year DpCO2 (year 100-year 91) is 0.413 latm, and at
164200 years, the 10-year DpCO2 (year 200-year 191) is 0.102 latm
165(Fig. 3). This 200-year model spinup may not be sufficient for full
166adjustment of all variables at all depths, but appears satisfactory
167for surface pCO2 and nutrients, which is the focus of this effort.
168The results from the last year (year 200 of each reanalysis spinup)
169are compared with in situ data and with one another.

1702.2. Data sets

1712.2.1. Forcing data
172Forcing data variables are shown in Fig. 1. Monthly climatolo-
173gies are used in all cases. All are obtained from reanalysis products
174except soil dust (iron), ozone, clouds, and atmospheric CO2. Iron is
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Fig. 1. Interactions among the main components of NOBM, nominal outputs, and forcing fields. IOP indicates inherent optical properties. Forcing variables are shown in the
gray boxes. Reanalysis forcing variables are in bold. Surface pressure and precipitable water effects on surface irradiance play a small role in the inorganic carbon results and
are ignored in this effort.
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