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a b s t r a c t

We present a nonhydrostatic ocean model with an isopycnal (density-following) vertical coordinate sys-
tem. The primary motivation for the model is the proper treatment of nonhydrostatic dispersion and the
formation of nonlinear internal solitary waves. The nonhydrostatic, isopycnal-coordinate formulation
may be preferable to nonhydrostatic formulations in z- and r-coordinates because it improves computa-
tional efficiency by reducing the number of vertical grid points and eliminates spurious diapycnal mixing
and solitary-wave amplitude loss due to numerical diffusion of scalars. The model equations invoke a
mild isopycnal-slope approximation to remove small metric terms associated with diffusion and nonhy-
drostatic pressure from the momentum equations and to reduce the pressure Poisson equation to a sym-
metric linear system. Avoiding this approximation requires a costlier inversion of a non-symmetric linear
system. We demonstrate that the model is capable of simulating nonlinear internal solitary waves for
simplified and physically-realistic ocean-scale problems with a reduced number of layers.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Literature review

Simulating internal waves is one of the most computationally
challenging tasks in ocean modeling. Large-scale processes such
as internal tides can be modeled reasonably well with computa-
tionally-inexpensive hydrostatic models (Kantha and Clayson,
2000). Simulations of nonlinear internal solitary waves, on the
other hand, require computationally-expensive nonhydrostatic
models to represent dispersive behavior. Nonhydrostatic models
can incur an order of magnitude increase in computational time
relative to hydrostatic models due to the elliptic solver for the non-
hydrostatic or dynamic pressure (Fringer et al., 2006). Further-
more, simulations of nonlinear internal solitary waves require
high horizontal grid resolution to ensure that numerically-induced
dispersion1 is small relative to physical dispersion (Vitousek and
Fringer, 2011).

The vertical coordinate system is often reported as the most
important aspect in the design of an ocean model (Griffies et al.,
2000; Chassignet et al., 2000; Willebrand et al., 2001; Chassignet,
2011). The three vertical coordinate systems typically used in ocean
models are: (1) Height or z-coordinates, (2) Terrain-following or

r-coordinates, and (3) Isopycnal or q-coordinates. Each approach
has numerous advantages and disadvantages as outlined in
Griffies et al. (2000). Existing nonhydrostatic models employ z- or
r-coordinates [e.g. (Mahadevan et al., 1996a,b), MITgcm
(Marshall et al., 1997b,a), SUNTANS (Fringer et al., 2006) for
z-coordinates, POM (Kanarska and Maderich, 2003), BOM
(Heggelund et al., 2004), ROMS (Kanarska et al., 2007), FVCOM
(Lai et al., 2010a) for r-coordinates and ICOM (Ford et al.,
2004a,b) for vertically unstructured coordinates]. z- and
r-coordinate models are capable of representing overturning
motions and eddies (e.g. Kelvin–Helmholtz, Rayleigh–Taylor, and
other instabilities) that are associated with many small-scale
nonhydrostatic processes. Isopycnal-coordinate models, on the
other hand, cannot represent overturning motions or unstable
stratification. This deficiency leads to the notion that isopycnal
coordinates are not suitable for modeling nonhydrostatic processes
(Adcroft and Hallberg, 2006). Consequently, existing isopycnal
models such as MICOM/HYCOM (Bleck et al., 1992; Bleck, 2002),
HIM (Hallberg, 1995, 1997; Hallberg and Rhines, 1996), POSEIDON
(Schopf and Loughe, 1995), POSUM (Higdon and de Szoeke, 1997;
de Szoeke, 2000) so far exclusively employ the hydrostatic
approximation. While clearly a deficiency of isopycnal models,
the inability to represent unstable stratification is an issue for
hydrostatic and nonhydrostatic isopycnal formulations alike. In this
paper, we do not propose a means for isopycnal-coordinate models
to represent unstable stratification—this task is clearly suited to
z- and r-coordinate models. Instead, the primary motivation
behind the model presented in this paper is the proper treatment
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of dispersion and the formation of nonlinear internal solitary waves
in the context of an isopycnal-coordinate model. Internal solitary
waves are clearly nonhydrostatic and not associated with overturn-
ing motions. Although overturning structures may exist in the
vicinity of internal wave generation sites that might preclude the
use of an isopycnal-coordinate model, a model is not required to
resolve these structures to obtain a good prediction of the internal
wave generation. For example, Klymak and Legg (2010) and Klymak
et al. (2010) developed a simple scheme that faithfully captures dis-
sipation and mixing related to internal wave generation at a ridge
and show that their hydrostatic model was almost identical to the
nonhydrostatic model in predicting the generation dynamics. This
suggests that, while small-scale, nonhydrostatic processes related
to internal wave generation are indeed complex, they can be
parameterized appropriately in large-scale z-, r-, and isopycnal-
coordinate models that do not resolve them. Hence, a nonhydro-
static, isopycnal-coordinate formulation may be suitable for model-
ing internal or interfacial waves.

In the context of internal wave modeling, isopycnal-coordinates
may provide some advantages over z- and r-coordinates. Isopycnal
or density-following coordinates provide natural representations
of (stably) stratified fluids. This reduces the number of vertical grid
points from Oð100Þ in z- and r-coordinate models to Oð1Þ in iso-
pycnal coordinates (Bleck and Boudra, 1981). Ideally, in locations
where the internal wave structure is predominantly mode-1, an
isopycnal model with only two layers may suffice (Simmons
et al., 2011). The primary disadvantage of modeling nonhydrostatic
pressure is that it requires solution of a three-dimensional elliptic
(Poisson) equation for the nonhydrostatic pressure which signifi-
cantly increases the computational cost relative to the hydrostatic
model. Solving this elliptic equation requires optimally OðNÞ oper-
ations (Briggs et al., 2000) where N is the number of grid cells. Iso-
pycnal coordinates can improve the efficiency of nonhydrostatic
methods by reducing the required number of vertical grid points
by an order of magnitude relative to z- and r-coordinate models.
Thus, reducing the number of vertical layers and thus the overall
number of grid cells by an order of magnitude can result in at least
one order of magnitude reduction in computational cost.

Another advantage of isopycnal-coordinates is the reduction or
elimination of spurious diapycnal mixing. Transport in the ocean
predominantly occurs along rather than across isopycnal surfaces
(Iselin, 1939; Montgomery, 1940). In many applications, spurious
diapycnal mixing, arising from numerically-diffusive truncation
error in scalar transport schemes in z- and r-coordinate models
(Fringer et al., 2005), can be larger than physical diapycnal mixing
(Griffies et al., 2000). Isopycnal coordinates, on the other hand, are
not susceptible to spurious diapycnal mixing because the govern-
ing equations are constructed to directly control the amount of dia-
pycnal transport – if any (Bleck and Boudra, 1981; Griffies et al.,
2000). Hence, the problem of energy loss due to spurious diapycnal
mixing that occurs in numerical models during the formation and
propagation of internal solitary waves (Hodges et al., 2006) may be
reduced or eliminated with isopycnal coordinates.

1.2. Outline of the proposed model

Existing approaches for simulating nonhydrostatic internal
waves include z- and r-coordinate models applied at high resolu-
tion in 3-D (Fringer et al., 2006; Vlasenko and Stashchuk, 2007;
Vlasenko et al., 2009; Vlasenko et al., 2010; Lai et al., 2010b;
Zhang et al., 2011; Guo et al., 2011) or 2-D slices (Scotti et al.,
2007; Scotti et al., 2008; Buijsman et al., 2010) or asymptotic/Bous-
sinesq-type approaches using 2-layer (Brandt et al., 1997; Choi and
Camassa, 1999; Lynett and Liu, 2002; de la Fuente et al., 2008;
Steinmoeller et al., 2012) or multi-layer models (Liu and Wang,
2012). Asymptotic or Boussinesq-type approaches do not require

a pressure projection method. Instead, they include higher-order
derivatives to account for the nonlinear and dispersive behavior.
Boussinesq-type models have a limited range of applicability that
is often the weakly nonlinear, weakly nonhydrostatic regime. To
extend this range of applicability, more terms may be included
or advanced formulations may be introduced. However, this can
lead to an unwieldy set of governing equations containing high-
order, mixed time-and-space derivatives.

The formulation presented here is intended to be flexible (using
an arbitrary number of layers) and straightforward (resembling
existing ocean models). The numerical method uses a pressure pro-
jection method which results in an elliptic equation for the
dynamic pressure (as in z- and r-coordinate models). The elliptic
equation in isopycnal coordinates results in a non-symmetric sys-
tem of linear equations. However, by invoking a mild-slope
approximation, the system becomes symmetric and remarkably
similar to the elliptic equation in z-coordinates.

Another significant difference between existing isopycnal mod-
els and the model presented here (besides the treatment of nonhy-
drostatic pressure) is the time-stepping procedure. Most isopycnal
models use mode-splitting to treat fast free-surface gravity waves
(Bleck and Smith, 1990; Higdon and Bennett, 1996; Higdon and de
Szoeke, 1997; Hallberg, 1997). The current model uses an implicit
time-stepping procedure for the free surface following Casulli
(1999) which is common in nonhydrostatic models in z- and r-
coordinates (a list of nonhydrostatic models using implicit time-
stepping procedures is given in Vitousek and Fringer (2013)).
Casulli (1997) developed a hydrostatic, isopycnal model with an
implicit time-stepping procedure for the free surface and layer
heights. In his approach, the gradient of the Montgomery potential
(M), which represents the hydrostatic pressure in isopycnal coordi-
nates, is discretized implicitly. Thus, computing the free-surface
and interface heights requires the inversion of a large (3-D) system
of equations which is comparable in cost to the solution of the
(3-D) elliptic equation for the nonhydrostatic pressure. The current
model is similar to the approach of Casulli (1997). However, we
split the Montgomery potential into barotropic (MðbtÞ) and
baroclinic (MðbcÞ) parts according to

M ¼ q�1
0 ðph þ qgzÞ ¼ q�1

0 ðps þ q0ggÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼MðbtÞ

þMðbcÞ; ð1Þ

where q is the density (q0 is the reference density), ph is the hydro-
static pressure, ps is the surface (atmospheric) pressure, g is the
free-surface height, z is the interface location, and the term qgz
originates from the transformation to isopycnal coordinates.
Because the barotropic and baroclinic portions of the Montgomery
potential represent fast free-surface and slow internal-gravity
waves, they are discretized implicitly and explicitly, respectively.
This discretization requires inversion of a 2-D system in the hori-
zontal to compute the free-surface height as is the case with impli-
cit free-surface models in z- and r-coordinates. The computational
cost of the 2-D inversion for the free-surface height is minimal com-
pared to the 3-D inversion for the nonhydrostatic pressure.

1.3. Use of Lagrangian coordinates for the nonhydrostatic equations

Adcroft and Hallberg (2006) conclude that the nonhydrostatic
projection method and use of Lagrangian vertical coordinates are
mutually exclusive. Their argument is based on how the Lagrangian
algorithm prescribes the material derivative of the (general) vertical
coordinate, _r, in the continuity equation while in the nonhydrostatic
projection method this term should instead come from the vertical
momentum equation. This leads to a conundrum in which one can-
not simultaneously supply and diagnose a quantity in an equation
(Adcroft and Hallberg, 2006). The present study does not seem lim-
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