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a b s t r a c t

A numerical method is proposed for solving the two layer shallow water equations with variable bathym-
etry in one dimension based on high-resolution f-wave-propagation finite volume methods. The method
splits the jump in the fluxes and source terms into waves propagating away from each grid cell interface.
It addresses the required determination of the system’s eigenstructure and a scheme for evaluating the
flux and source terms. It also handles dry states in the system where the bottom layer depth becomes
zero, utilizing existing methods for the single layer solution and handling single layer dry states that
can exist independently. Sample results are shown illustrating the method and its handling of dry states
including an idealized ocean setting.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The multilayer shallow water equations have come under
increasing interest as a model for primarily long wave phenomena
where vertical structure either plays an important role in the flow
or the internal structure itself is of interest. The primary barrier to
the use of these equations more broadly has been the complexity
and computational cost of the required solvers. Past approaches
to this problem have included the use of more diffusive solvers
(Salmon, 2002), relaxation approaches (Abgrall and Karni, 2009),
and decoupling schemes that obey entropy laws (Bouchut and
Morales de Luna, 2008). Another difficulty is the loss of hyperbolic-
ity commonly associated with the physical mechanism of Kelvin–
Helmholtz instabilities. Work has also been done to mitigate this
effect by applying physically motivated momentum transfer to sta-
bilize the system (Castro-Díaz et al., 2010).

To address some of these difficulties, the numerical method
presented here attempts to overcome many of the drawbacks of
previous methods while remaining accurate in many scenarios of
interest. In particular this method is intended for oceanic applica-
tions where a two-layer model could be used to represent a rela-
tively shallow top ‘‘boundary’’ layer and a deeper ‘‘abyssal’’ layer.
This implies that the bottom layer can be assumed to become
dry before the top layer. Forcing physics with limited vertical ex-
tent such as wind or friction drag are of particular interest, such

as in storm surge applications. In these cases issues such as
hyperbolicity are not a concern due to the regime scales being con-
sidered. On the other hand, wetting and drying of the internal sur-
face will occur along the shelf break and must be handled carefully.
Although the step to multiple layers only introduces a limited rep-
resentation of the three dimensional nature of many of these flows,
it is computationally less-expensive than a fully three-dimensional
simulation, making the required resolution of some oceanic flows
attainable even on modest computing hardware.

The presentation of the numerical method begins with an intro-
duction in Section 2 to the salient features of the multilayer shal-
low water equations including methods for evaluating the
eigenspace. A discussion of the basic components of the f-wave ap-
proach follows with the specific implementation details for the
multilayer shallow water equations and dry states in Section 3. Fi-
nally, example solutions from the numerical method are presented
for test cases where dry states are involved in Section 4. It should
be noted that the presentation will be restricted to the one-dimen-
sional multilayer shallow water equations for clarity. Many of the
salient issues are present in one-dimension and the extension to
two-dimensions follows directly from the methods presented here
with the formulation of a transverse Riemann solver and extra care
dealing with dry-states in the transverse directions. This topic is
left to be presented in future work.

2. Multilayer shallow water equations

The multilayer shallow water equations can be derived by inte-
grating the Euler equations in the vertical coordinate direction as
in the case of the single-layer equations. The difference between
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the multilayer and single-layer shallow water equations is the
addition of vertical variation in the density and velocity. In one-
dimension and for two layers the equations are often written as

ðh1Þt þ ðh1u1Þx ¼ 0;

ðh1u1Þt þ h1u2
1 þ

1
2

gh2
1

� �
x
¼ �gh1ðh2 þ bÞx;

ðh2Þt þ ðh2u2Þx ¼ 0;

ðh2u2Þt þ h2u2
2 þ

1
2

gh2
2

� �
x
¼ �rgh2ðh1Þx � gh2bx

ð1Þ

where hi and ui are the depths and velocities in each layer respec-
tively, b is the bathymetry from a reference sea-level, g the gravita-
tional acceleration, and r � q1=q2 the ratio of the layer densities
(see Fig. 1). Note that we have enumerated the layers with the
top layer being indexed first. The result of the vertical integration
and hydrostatic assumption is a system of partial differential equa-
tions resembling two sets of single-layer shallow water equations
with the addition of a coupling term between the layers. It is impor-
tant to note that this coupling is due solely to the integration of the
hydrostatic pressure and does not represent momentum transfer
due to drag between the layers.

Another form of Eqs. (1) involves forgoing the division of the
equations by the density of each layer in the derivation and inte-
grating the bottom layer coupling term so that a term appears in
the flux of the second-layer’s momentum equation rather than as
a source term (Abgrall and Karni, 2009). In this case, the non-con-
servative coupling terms in each layer are symmetric. Using the
same notation as before, these equations can be written as

ðq1h1Þt þ ðq1h1u1Þx ¼ 0;

ðq1h1u1Þt þ q1h1u2
1 þ

1
2

gq1h2
1

� �
x

¼ �gq1h1ðh2Þx � gq1h1bx;

ðq2h2Þt þ ðq2h2u2Þx ¼ 0;

ðq2h2u2Þt þ q2h2u2
2 þ

1
2

gq2h2
2 þ gq1h2h1

� �
x
¼ gq1h1ðh2Þx � gq2h2bx:

ð2Þ

The symmetry in the non-conservative products has the benefit that
the transfer of momentum due to these coupling terms moves di-
rectly between the layers which will be advantageous numerically.
For the remainder of the discussion we will focus our attention so-
lely on the two-layer case solving the system of equations in (2).
Extensions of these methods to greater numbers of layers are pos-
sible, but for simplicity these complications will be ignored in the
rest of the current discussion and is left as future work on the
subject.

Since the intention is to consider oceanic applications, an
important simplification of the nonlinear equations is the lineari-
zation about an ocean at rest. Taking the steady state where û1

and û2 are zero and the sea surface ĝ1 and internal surface ĝ2 are
constant we can rewrite (2) as

ð~h1Þt þ ð~l1Þx ¼ 0;

ð~l1Þt þ gĥ1ð~h1 þ ~h2Þx ¼ 0;

ð ~h2Þt þ ð~l2Þx ¼ 0; and

ð~l2Þt þ gĥ2 ð~h2Þx þ rð~h1Þx
h i

¼ 0:

ð3Þ

where we have defined ĥ1 ¼ ĝ1 � ĝ2;
~h1 ¼ ~g1 � ~g2; ĥ2 ¼ ĝ2 � b, and

~h2 ¼ ~g2 for convenience and ~li is the perturbation to the momen-
tum of the background ocean at rest such that ~li ¼ ĥi~ui (see
Fig. 1). Note with these definitions ĥ2 is spatially dependent due
to the inclusion of b.

With these equations, we can write the system (3) in the form
~qt þ Aðq̂Þ~qx ¼ 0, where

q̂ ¼

ĥ1

0
ĥ2

0

266664
377775; ~q ¼

~h1

ĥ1~u1

~h2

ĥ2~u2

266664
377775; and ~Aðq̂Þ ¼

0 1 0 0
gĥ1 0 gĥ1 0
0 0 0 1

rgĥ2 0 gĥ2 0

26664
37775:

2.1. Eigenspace

The eigenspace of hyperbolic PDEs is often of interest and one of
the primary sources of difficulties when considering the multilayer
shallow water equations. If one were to directly use the flux Jaco-
bian of (2) the eigenvalues and eigenvectors would be identical to
two uncoupled shallow water equation systems. This approach of
using a splitting of the layers was shown to be unstable (Castro
et al., 2001) unless suitable corrections are used (Bouchut and Mor-
ales de Luna, 2008). Since the wave speeds predicted by this ap-
proach do not take into account the coupling between the layers,
this approach is not desirable for methods that depend on this
information to construct a Riemann solution. Instead it is common
to write the system in a quasi-linear form qt þ ~AðqÞqx ¼ ~SðqÞ where

q ¼ ½q1h1;q1h1u1;q2h2;q2h2u2�T

and

~AðqÞ ¼

0 1 0 0
gh1 � u2

1 2u1 rgh1 0
0 0 0 1

gh2 0 gh2 � u2
2 2u2

26664
37775 and ~SðqÞ ¼

0
�gq1h1bx

0
�gq2h2bx

26664
37775:
ð4Þ

The characteristic polynomial of the matrix ~AðqÞ is then

ððk� u1Þ2 � gh1Þððk� u2Þ2 � gh2Þ � rg2h1h2 ¼ 0: ð5Þ

Fig. 1. Coordinates for a one-dimensional system with two-layers and varying bathymetry in general and for the linearized case.
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