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ABSTRACT

Mesoscale eddies play a substantial role in the dynamics of the ocean, but the dominant length-scale of
these eddies varies greatly with latitude, stratification and ocean depth. Global numerical ocean models
with spatial resolutions ranging from 1° down to just a few kilometers include both regions where the
dominant eddy scales are well resolved and regions where the model’s resolution is too coarse for the
eddies to form, and hence eddy effects need to be parameterized. However, common parameterizations
of eddy effects via a Laplacian diffusion of the height of isopycnal surfaces (a Gent-McWilliams diffusiv-
ity) are much more effective at suppressing resolved eddies than in replicating their effects. A variant of
the Phillips model of baroclinic instability illustrates how eddy effects might be represented in ocean
models. The ratio of the first baroclinic deformation radius to the horizontal grid spacing indicates where
an ocean model could explicitly simulate eddy effects; a function of this ratio can be used to specify
where eddy effects are parameterized and where they are explicitly modeled. One viable approach is
to abruptly disable all the eddy parameterizations once the deformation radius is adequately resolved;
at the discontinuity where the parameterization is disabled, isopycnal heights are locally flattened on
the one side while eddies grow rapidly off of the enhanced slopes on the other side, such that the total
parameterized and eddy fluxes vary continuously at the discontinuity in the diffusivity. This approach

should work well with various specifications for the magnitude of the eddy diffusivities.

Published by Elsevier Ltd.

1. Introduction

Mesoscale eddies are ubiquitous in the ocean, and are of leading
order importance to the dynamics of major current systems, such
as the Antarctic Circumpolar Current (e.g. Hallberg and Gnanadesi-
kan, 2006), the Kuroshio (e.g. Waterman et al., 2011), and the Gulf
Stream (e.g. Chassignet and Marshall, 2008). Credible models of the
ocean’s dynamics need to either explicitly resolve eddies or to
parameterize their effects.

The dominant spatial scales of baroclinic ocean mesoscale ed-
dies can be broadly characterized by the first baroclinic deforma-
tion radius, which is the distance that a nonrotating first-mode
internal gravity wave would propagate in one inertial timescale
(e.g. Gill, 1982). With an appropriate regularization at the equator,’
the first baroclinic deformation radius is given by
Lpes = y/c2/ (f? + 2Bcg), where c, is the first-mode internal gravity
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! This is just a simple function that goes smoothly between the appropriate
equatorial and mid-latitude definitions of the deformation radius without the need
for any arbitrary transition latitude (see, e.g. Chelton et al., 1998).
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wave speed, f is the Coriolis parameter, and f :% is its meridional
gradient.

In idealized models of baroclinic instability, the upper and low-
er bounds of unstable wavelengths are proportional to the defor-
mation radius, while the most unstable wavenumber is the
inverse of the deformation radius (see, e.g., the textbook by Pedlo-
sky (1987)). The observed dominant eddy length-scales in the
ocean vary more slowly with latitude than does the first baroclinic
deformation radius (Stammer, 1997), but this may reflect the
greater influence of higher baroclinic modes in the tropics and of
effectively barotropic eddies in higher latitudes.

Numerical ocean models need to represent the effects of meso-
scale eddies, either by explicitly resolving them or via a suitable
parameterization, if they are to replicate the dynamical response
of the real ocean. As will be illustrated later, the ratio of a model’s
grid spacing to the deformation radius gives a good indication of
whether a model will be locally capable of explicitly resolving eddy
effects. However, as both the deformation radius and an ocean
model’s grid spacing vary in space, one should ask where, not
whether, a global ocean model can explicitly represent eddies.
Fig. 1 shows the ocean model horizontal resolution required for
the baroclinic deformation radius to be twice the grid spacing,
based on a nominally eddy permitting ocean model after one year
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Mercator Grid Resolution Required to Resolve Baroclinic Deformation Radius with 2 Ax

Fig. 1. The horizontal resolution needed to resolve the first baroclinic deformation radius with two grid points, based on a 1/8° model on a Mercator grid (Adcroft et al., 2010)
on Jan. 1 after one year of spinup from climatology. (In the deep ocean the seasonal cycle of the deformation radius is weak, but it can be strong on continental shelves.) This
model uses a bipolar Arctic cap north of 65°N. The solid line shows the contour where the deformation radius is resolved with two grid points at 1° and 1/8° resolutions.

of spin-up from climatology. At the coarse resolution that is typical
of the ocean components of CMIP5 coupled climate models (nom-
inally 1° resolution), an ocean model only resolves the deformation
radius in deep water in a narrow band within a few degrees of the
equator; any important extratropical eddy effects will need to be
parameterized. At a much higher resolution, such as a 1/8° Merca-
tor grid, the deformation radius is resolved in the deep ocean in the
tropics and mid-latitudes, but even in this case eddies are not re-
solved on the continental shelves or in weakly stratified polar lat-
itudes. An unstructured and adaptive grid ocean model could help
to address this issue, but such models are not yet in widespread
use for global ocean climate modeling, and even then computa-
tional speed may dictate the use of models that do not resolve
mesoscale eddies everywhere.

In this paper, a series of numerical simulations of a variant of
the Phillips (1954) model of baroclinic instability are used to
examine the effects of resolution on a numerical model’s ability
to exhibit the net overturning circulation driven by mesoscale ed-
dies. The effects of a commonly used parameterization of eddy ef-
fect, both on the models’ explicitly resolved eddies and on the net
overturning, are examined. Based on these results, a simple pre-
scription is offered for the typical situation in global ocean mod-
els, where eddies are resolved in only part of the domain and in
that portion it is desired that the model be allowed to explicitly
simulate their effects, but in the remainder of the domain that
eddies be entirely parameterized. Specifically, the eddy diffusivi-
ties should be multiplied by a “resolution function”, ranging from
0 to 1, of the ratio of the baroclinic deformation radius to the

model’s effective grid spacing, A = v/ (AX2 + Ay?)/2. The resolu-
tion function that works best for the cases presented here rapidly
makes a transition from 1 when this ratio is greater than a value
of about 2 (the exact value is not very important and can be cho-
sen to be higher) to 0 for larger values. In the idealized case pre-
sented here, this prescription is found to give a reasonable
representation of the net eddy-driven overturning over a wide
range of resolutions.

2. The test configuration and model

Phillips (1954) analyzed the baroclinic instability that arises in
a simple two-layered quasigeostrophic model of a geostrophically
sheared flow in a reentrant channel. This problem has the advan-
tage that many of the properties of the eddies, including necessary
conditions for the growth of instabilities, the growth rate, energet-
ics and vertical structure of the exponentially growing linear
modes can be calculated analytically, as has been documented in
many textbooks on geophysical fluid dynamics (e.g. Pedlosky,
1987; Vallis, 2006).

This study examines instabilities of a stacked shallow water
variant of the Phillips problem, which is described by the momen-
tum and continuity equations:
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Here u, is the horizontal velocity in layer n, where n =1 for the
top layer and n =2 for the bottom layer. hy = 1,_,, — 1,1, is the
thickness of layer n, which is bounded above and below by inter-
faces at heights #,,_,, and 7,,,,- These equations are solved in a
2000 m deep channel that is 1200 km long and reentrant in the
x-direction, and 1600 km wide in the y-direction with vertical
walls at the northern and southern boundaries. The Coriolis param-
eter, f, varies linearly in the y-direction between 6.49 x 107> s~!
and 9.69 x 107> s~!, following the common g-plane approxima-
tion. The horizontal stress tensor, T, is parameterized with a shear
and resolution dependent Smagorinsky biharmonic viscosity (Grif-
fies and Hallberg, 2000). The Montgomery potentials,
M, = p/p, + 8z, in the two layers are given by a vertical integration
of the hydrostatic equation, so that
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