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a b s t r a c t

A three-dimensional ocean model and its adjoint model are used to simultaneously optimize the initial
conditions (IC) and the wind stress drag coefficient (Cd) for improving storm surge forecasting. To dem-
onstrate the effect of this proposed method, a number of identical twin experiments (ITEs) with a pre-
scription of different error sources and two real data assimilation experiments are performed. Results
from both the idealized and real data assimilation experiments show that adjusting IC and Cd simulta-
neously can achieve much more improvements in storm surge forecasting than adjusting IC or Cd only.
A diagnosis on the dynamical balance indicates that adjusting IC only may introduce unrealistic oscilla-
tions out of the assimilation window, which can be suppressed by the adjustment of the wind stress
when simultaneously adjusting IC and Cd. Therefore, it is recommended to simultaneously adjust IC
and Cd to improve storm surge forecasting using an adjoint technique.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the potentially increasing intensity of tropical cyclones
(TCs) under the background of the global warming (Webster
et al., 2005; Emanuel, 2005; Emanuel et al., 2008; Elsner et al.,
2008; Knutson et al., 2010), the TC-induced storm surges become
a severe threat to the coastal regions with dense population and
large economic community. For instance, the storm surges accom-
panied with TCs in the western Pacific and the South China Sea
(SCS) cause huge damage of property and loss of lives each year
in the East Asian countries such as Philippines, Vietnam and China
(Wu and Kuo, 1999).

In the last several decades, considerable improvements have
been made in the real-time prediction skill of storm surges with
the use of high resolution 3-D model and advanced data assimila-
tion methods (e.g., Griffith and Nichols, 2000; Zhang et al., 2003;
Lionello et al., 2006; Peng and Xie, 2006; Butler et al., 2012). How-
ever, large errors still exist due to the uncertainties in the sea sur-
face wind forecasting which is largely dependent on the accuracy
of the TC track and intensity forecasts. Although continuous
improvements in the TC track forecasting skill have been made
during the last several decades, no significant improvements are

seen in the TC intensity forecasting skill (Lowag and Black, 2008;
Evans and Falvey, 2013). In addition, with the potential increase
of TC destructive power in the future (Webster et al., 2005;
Emanuel, 2005; Emanuel et al., 2008; Elsner et al., 2008; Knutson
et al., 2010), it will be more difficult to make an accurate sea sur-
face wind forecasting, resulting in larger bias in storm surge
forecasting.

Many previous studies have indicated that the accuracy of
storm surge forecasting is mainly dependent on that of sea surface
wind stress calculation (Doyle, 2002; Moon, 2005; Xie et al., 2008).
The most common formula employed to calculate wind stress is
the quadratic one with respect to the wind speed, i.e.,

s ¼ qaCdjvjv; ð1Þ

v ¼ va � vo; ð2Þ

where qa is the air density, Cd the drag coefficient va the wind
velocity at 10 m height above the surface, and vo the velocity of
ocean surface currents. It is obvious that the values of wind stress
depend on both the wind speed and the drag coefficient Cd. In storm
surge models, va is usually obtained from a simple wind model such
as the Holland model (Holland, 1980) based on the TC track and
intensity forecasting or from a complex weather forecasting model
such as the Weather and Research Forecast (WRF) model, and the
large uncertainties in the TC track and intensity forecasts may lead
to large bias in va. On the other hand, Cd has often been set either as
a constant (Jones and Davies, 1998; Konishi et al., 1985, 1986) or
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using an empirical formula which is a linear function of wind speed
(Sheppard, 1958; Smith, 1980; Large and Pond, 1981; Wu, 1980,
1982) in practice:

Cd ¼
qa

qw
ðaþ bjvjÞ; ð3Þ

where qa and qw are the air density and water density, respectively,
and a and b are the empirical parameters. Under the intermediate
wind speed range (approximately from 7 to 20 m s�1), the ocean
surface is hydrodynamically rough and the corresponding drag
coefficient Cd displays a general tendency of increasing with wind
speed (Garratt, 1977; Wu, 1980). For lower wind speeds, the ocean
surface is either in hydrodynamically smooth or transitional regime
and the wave influence is competing with the viscous effects (Don-
elan, 1990). For very high wind speeds (over 25 m s�1), extensive
wave-breaking occurs. The resulting spume, flying spray, and broad
regions with flow separation act like a shroud shielding the fine-
scale wave roughness from the airflow. Field measurements
indicate that Cd reaches a maximum near 32 or 33 m s�1 and then
decreases with increasing wind speed (Powell et al., 2003; Jarosz
et al., 2007). Jarosz’s results also show that when using a linear
increasing empirical formula Cd is underestimated in the intermedi-
ate wind and overestimated in the high wind, inevitably resulting to
bias in the wind stress calculation. Therefore, to reduce the errors in
the wind stress calculation, we have to reduce the bias in va and/or
Cd.

Efforts have been made in reducing the bias in va (Hoteit et al.,
2009; Broquet et al., 2011). Hoteit et al. (2009), Broquet et al.
(2011) tried to correct the wind bias through data assimilation,
but their method is only valid within the data assimilation win-
dow. Hoteit et al. (2009), Peng et al. (2007) used the 3-D Princeton
Ocean model (POM) and its adjoint model to adjust the maximum
wind radius in the wind stress calculation based on the empirical
Holland model. However, their method is only applicable in the
case of using an empirical formula for the wind speed calculation
which is the function of the maximum wind radius; it is invalid
when wind fields are obtained from numerical weather model out-
put which does not contain the parameter of the maximum wind
radius. On the other hand, the errors in wind stress calculation
due to the bias in va can be reduced partially through adjusting
the value of Cd which may have large uncertainty using the tradi-
tional formula (Peng et al., 2013). In addition, the systematic bias
caused by many known or unknown sources such as insufficient
resolution for an imperfect storm surge model can be also reduced
by adjusting Cd (Peng et al., 2013). Therefore, adjusting Cd to an
‘‘optimal’’ value could be an effective way to improve the accuracy
of the wind stress calculation and thus the storm surge forecasting.

To estimate the wind stress drag coefficient, one of the efficient
ways is through fitting the model output to the observations using
adjoint technique (Derber, 1987; Le Dimet and Talagrand, 1986; Yu
and O’Brien, 1991; Zhang et al., 2002, 2003; Chen et al., 2008; Peng
and Xie, 2006). Most studies used 1-D or 2-D model and its adjoint
model with simplified physics to optimize Cd (Yu and O’Brien,
1991; Zhang et al., 2002, 2003; Chen et al., 2008; Peng and Xie,
2006). However, previous studies have shown that 3-D storm surge
models can improve the storm surge forecasting considerably,
compared to 1-D or 2-D models (Xie et al., 2004; Peng et al.,
2005; Weisberg and Zheng, 2008), since the 3-D models can take
into account the nonlinear processes such as the bottom friction
and tide-current-wave interactions. Although a 3-D ocean model
and its adjoint model require more computational resource, it is
affordable with the rapid development of the computer technol-
ogy. Therefore, it is worth to explore the effects of optimizing Cd

in storm surge simulation in the framework of 3-D ocean models.
A recent study of Zedler et al. (2013) indicates that a small number
of measurements of upper ocean temperature and currents can be

used to make estimates of Cd assuming a small range of uncer-
tainty in Cd using adjoint technique. Their results also show that
the initial state of the ocean, especially the field of background cur-
rents, is important for the estimation of Cd. The study of Peng et al.
(2013) further indicates that adjusting Cd through adjoint tech-
nique based on 3-D POM and its adjoint model can lead to a signif-
icant improvement in storm surge forecasting up to 48 h.

Although the influence of the initial conditions (IC) on storm
surge simulation is relatively small compared to the wind forcing
or model physics (Flowerdew et al., 2010; Peng et al., 2013), previ-
ous studies have shown that the positive effect of optimizing IC on
storm surge simulation is significant during the first several hours
of the simulation (Peng and Xie, 2006; Li et al., 2011). Moreover, it
is found that the errors of IC can affect the adjustment of boundary
conditions or model parameters in the process of data assimilation
(Zedler et al., 2013). In practice, since both the IC and the wind
stress may contain uncertainties, we speculate that simultaneously
adjusting both Cd and IC may be a more reasonable and effective
way that may achieve more improvements than adjusting only IC
or Cd for storm surge forecasting. To test this hypothesis, we per-
form both Identical Twin Experiments (ITEs) and the real case
experiments of simultaneously adjusting IC and Cd in the frame
of 3-D POM and its adjoint model in this study.

In Section 2, the POM and its adjoint model are briefly intro-
duced. Section 3 describes the experimental setup, including the
ITEs and the real data assimilation experiments. The experimental
results and corresponding analysis are presented in Section 4. Con-
clusion and discussion are given in Section 5.

2. The data assimilation method and the POM-4DVAR system

The four dimensional variational data assimilation (4DVAR) ap-
proach is employed in this study. It aims to find an ‘‘optimal’’ initial
model state or model parameters which minimizes the distance
between the model output and the observations. In general, the
distance is expressed as a so-called cost function J:

Jðx0; pÞ ¼
Z T

0
HðMðx0;pÞÞ � yobs
� �2

dt; ð4Þ

where x0 and p represent the initial model state variables and mod-
el parameters to be adjusted, M nonlinear ocean model, H the obser-
vation operator, yobs the observation variables, and T the
assimilation time window. In this paper, x0 is the water level at
every point of the domain and p is the empirical parameters (a,b)
of Cd. It should be noted that we neglect a background term in Eq.
(4) which measures the difference between the background fields
and the adjusted fields of the control variables. It is well known that
the background term in the cost-function has a function of limiting
the adjustment of control variables to a reasonable range, and the
background error covariance in the background term can play a role
in expanding the local observational information to an area within
the correlation scale and making multi-variable adjustment under
the dynamic constrain of the model. For storm surge simulation,
however, the role of the background term may be less important be-
cause the surges are mainly driven by the wind forcing and only
water level is taken as the control variable of the IC in this study.
On the other hand, neglecting the background term can allow the
adjustment of Cd to have more freedom so that such an adjustment
can compensate the wind errors and other unknown model errors,
though the adjusted values of Cd could be out of the range of the
physical meaning. Our goal is to determine an ‘‘optimal’’ value of
Cd which minimizes the errors of the storm surge forecasts for a
specific case, regardless of the physical meaning of the Cd value.
Therefore, we ignore the background term in the calculation of cost
function in this study.
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