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a b s t r a c t

This study classifies coastal time-series data according to subsurface phytoplankton vertical distributions
to be able to capture the variability of primary production at fine spatial and temporal scales. Our method
uses algorithms developed to extract patterns in large datasets of time-sequential data. We use short
time-series of QuikSCAT surface winds, MODIS sea surface temperature and surface chlorophyll a associ-
ated with each in situ chlorophyll a profile, as well as the season and bottom depth of the in situ station to
discover patterns that can be used to classify new data into 12 profile classes. We first fill in missing
MODIS data using a conditional random field model so that cloudy days are not excluded. The most likely
profile is then predicted using all the available data. We apply our method to the St Helena Bay area, a
region within the productive Benguela Current upwelling system. A profile is predicted for each day
and each pixel of 4 km resolution satellite image for 16 consecutive months. Each profile is used in a
broad-band photosynthesis model to produce a daily three-dimensional estimate of gross primary
production. An average production rate of 3.2 g C m�2 day�1 was obtained for the area, which shows very
good agreement with other estimates from the region. The results show persistent high productivity near
the surface throughout the year with the exception of the winter months. Deeper in the water column
productivity is more seasonal. The 16 month time-series highlights the interannual, seasonal and daily
variability of the system. By linking physical processes to the distribution of phytoplankton at
appropriate spatio-temporal scales, we can now more rigorously investigate bottom-up driven impacts
on ecosystems characterised by short-term variability.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Photosynthesis by marine phytoplankton is the vital link in
cycling carbon between its inorganic form and living marine
organisms (Behrenfeld et al., 2006). Estimation of carbon mass
entering the marine environment requires accurate measurement
of carbon fixation by phytoplankton. To estimate total carbon
production over the water column it is necessary to integrate
with respect to depth through the euphotic zone. This requires

information on the phytoplankton photosynthetic pigments
(approximated by the biomass of chlorophyll a) and the photosyn-
thetically available radiation (PAR) at depth. Resolving the vertical
light and biomass distribution can greatly improve the accuracy of
primary production models (Jacox et al., 2013).

Numerous publications on depth-integrated primary produc-
tion estimated from ocean colour data incorporate the vertical
distribution of chlorophyll a (chl a). The simplest approach is to
assume a vertically homogenous biomass profile (André, 1992;
Behrenfeld and Falkowski, 1997a; Platt, 1986). More complex
methods estimate the vertical distribution using satellite-derived
surface biomass (Antoine et al., 1996; Hoepffner et al., 1999;
Morel and Berthon, 1989; Uitz et al., 2010) while others estimate
the parameters of a Gaussian curve that describes the vertical
distribution (Platt et al., 2008, 1991, 1988). A different approach
is to adopt representative profiles for a given region and season
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following the biogeography concept of Platt and Sathyendranath
(1988) (Longhurst et al., 1995; Sathyendranath et al., 1995). These
methods originated with the advent of satellite ocean colour data
and had the objective of obtaining large-scale estimates of primary
production. At the basin to global scale, monthly, seasonal or
regionally static representation of the biological structure of the
water column may be an appropriate simplification. However,
recent evaluations of ocean colour models showed a decrease in
model skill towards the coast and in shallower regions, and an
underestimation of the observed variability of primary production
(Carr et al., 2006; Friedrichs et al., 2009; Saba et al., 2011). Kahru
et al. (2009) applied commonly used models in the California
Current System and found a systematic high productivity bias in
all the tested models. Sources of error or uncertainty that have
been suggested include the input data, an over estimation of the
euphotic depth and the assumption of a steady state system
(Carr et al., 2006; Kahru et al., 2009; Siegel et al., 2001).

Many coastal systems are complex due to interaction with the
coastal topography and local wind forcing, and models that incor-
porate data that average over the appropriate spatial and temporal
scales of the events of interest will not be able to reproduce the
variability. This is particularly important for coastal upwelling sys-
tems that are characterised by higher rates of primary production,
carbon export and fisheries yields. Demarcq et al. (2008) demon-
strated the monthly variability of primary production in the
Benguela upwelling system by predicting the chl a profile for each
pixel of monthly SeaWiFS images at 4.5 km spatial resolution.
Although their method highlighted the monthly variability of pri-
mary production in the system, working on monthly time-scales
in upwelling areas may still misrepresent the physical–biological
interaction (García-Reyes et al., 2014).

Previous work on primary production in the Benguela system
has attempted to incorporate the variability of phytoplankton dis-
tributions. Silulwane et al. (2001) described characteristic profiles
in the Benguela system according to environmental data associated
with each profile class. Demarcq et al. (2008) progressed on this
work by using environmental data to predict the monthly profile
shape, and used the profiles in a broad-band light transmission
model to estimate monthly primary production. In this paper we
extend this work by linking the dynamic physical forcing of surface
wind stress and time-series of daily surface data to each character-
istic profile. Models of the effects of synoptic wind data on coastal
upwelling production have previously shown the importance of
wind variability (Botsford et al., 2006; García-Reyes et al., 2014).

To overcome the paucity of data in time-series of daily sea sur-
face temperature (SST) and surface chl a (SSC) data, we apply a
conditional random field (CRF) model. The CRF, as opposed to the
commonly used methods based on empirical orthogonal functions
(e.g. DINEOF (Alvera-Azcárate et al., 2007) and variations thereof),
is a highly-flexible non-linear method based on probability theory.
The CRF model uses available information to predict the most
likely missing value in a sequence. CRFs provide a framework for
labelling sequential data based on the conditional approach. By
applying the statistical properties of the class labels conditioned
on the observations, the label with the highest likelihood can be
calculated. They have been shown to outperform the more com-
monly used hidden Markov model on a number of real-world
sequential labelling tasks (Lafferty et al., 2001; Pinto et al., 2003;
Sha and Pereira, 2003).

Data from the St Helena Bay area, a region within the southern
Benguela upwelling system, are used to test the methodology. The
St Helena Bay area includes an intense upwelling cell off Cape
Columbine, an inshore region known for its high SSC due to reten-
tive oceanographic processes, and a wide shelf region which has a
fairly persistent shelf edge front with characteristic open ocean
water beyond the front. Within the Benguela system, this area is

one of the most productive in terms of phytoplankton productivity
and fisheries yields and is an important nursery ground for local
fish species (Hutchings et al., 2012).

2. Methods

Our method links the forcing (represented by a history of daily
remotely-sensed surface winds) with an in situ snapshot of the
subsurface vertical distribution of the phytoplankton biomass
(chl a profile). Information on recent changes in remotely-sensed
sea surface temperature (SST) or state of upwelling, and the recent
cumulative biomass of remotely sensed phytoplankton or sea
surface chlorophyll a (SSC) is included. Bottom depth and season
are also taken into account.

To simplify the complex interactions of the variables, the data
were pre-processed into discrete classes. A conditional random
field (CRF) model was used to fill in any missing class labels in
the SST and SSC sequences. The CRF model, which evaluates the
conditional probability of all possible values for the missing data
in a given sequence, is applied to the entire time-series at each
pixel location. As this can be computationally expensive process
on a standard desktop computer, the CRF model was applied to a
limited 16 month daily time-series from a sub-region of the south-
ern Benguela. With complete sequences of data, each profile class
could be associated with a suite of relevant information on the
concurrent and prior state of the environment that may influence
the profile’s shape. The statistical relationships between the
time-series of the variables and the profiles are used to predict
the profile for each pixel of a daily 4 km resolution satellite image.
The profiles are used with a satellite-derived estimate of surface
Photosynthetically Active Radiation (PAR) to calculate the
subsurface light field and subsequently the gross vertical primary
production distribution (Fig. 1).

2.1. Data pre-processing

2.1.1. Shipboard regional profiles (k-means clustering)
The South African Department of Environmental Affairs (DEA)

has provided a record of over 6500 vertical profiles of phytoplank-
ton fluorescence and temperature obtained from a thermistor and
profiling fluorometer on a Seabird SBE CTD deployed from ships.
These records date from 1988–2011 and cover the southern
Benguela region. Data were collected during annual surveys of
demersal and pelagic fish stocks. The season and the depth range
of the surveys vary according to the target stock, which explains
the inshore location of surveys in autumn and the few surveys in
winter (Fig. 2). A total of 1590 profiles fall within the St Helena
Bay region.

The profile data consist of three batches based on their process-
ing. The first batch, which spans 1988–2001 and the second batch
from 2001–2008 were recorded with a Chelsea Instruments Aqua-
Tracka MK III. For the first batch, a calibration equation was
obtained by regressing the recorded voltages from the fluorescence
sensor against discrete depth samples beginning a few metres
below the surface and at intervals of 10 m down to between 30
and 50 m depending on the profiling signature. Samples were fil-
tered onto Whatman GF/F filters, which were placed in 90% ace-
tone for 24 h to extract the pigments. Chl a was measured
fluorometrically using a Turner Designs Model 10-000R fluorome-
ter. The second batch was measured by reverse-phase high perfor-
mance liquid chromatography (HPLC) method described by Barlow
et al. (1997). The third batch spans 2009–2011 and was obtained
from a WETLabs fluorometer. A standard fluorometer calibration
from WETLabs software was used to obtain chl a concentrations.
Profiles were sampled at 1 m depth intervals after being smoothed
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