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a b s t r a c t

In the area of predictive microbiology, most models focus on simplicity and general applicability, and can
be classified as black box models with the main emphasis on the description of the macroscopic (pop-
ulation level) microbial behavior as a response to the environment. Their validity to describe pure
cultures in simple, liquid media under moderate environmental conditions is widely illustrated and
accepted. However, experiments have shown that extrapolation of these models outside the range of
experimental validation is not allowed as such. In general, the applicability and robustness of existing
models under a wider range of conditions and in more realistic situations can definitely be improved by
unraveling the underlying mechanisms and incorporating intracellular (microscopic) information.
Following a systems biology approach, the link between the intracellular fluxes and the extracellular
measurements is established by techniques of metabolic flux analysis. The modeling approach presented
in this paper will lead to more accurate predictive models for more complex systems, such as co-cultures
and structured environments, based on a topedown systems biology approach. A theoretical case study
in predictive microbiology is presented in which the potentials of metabolic network-based models are
illustrated. This tutorial paper is directed toward food scientists, who want to get familiar with the
mathematical framework used in metabolic flux analysis and adopt these tools in predictive microbi-
ology; the paper is also oriented toward researchers in systems biology, who want to explore the
potential and limitations of systems biology tools when applied to challenging (non-steady state)
conditions as encountered with bacterial populations in food products.

� 2012 Published by Elsevier Ltd.

1. Introduction

In predictive microbiology, an important area of food microbi-
ology, focus is on the mathematical description and prediction of
the evolution (growth, survival and inactivation) of pathogenic and
spoilage microorganisms in food products. Since the 1980s, there is
a remarkable increase of interest in predictive microbiology
(McMeekin, Olley, Ratkowsky, & Ross, 2002). Implementation of
these predictivemodels contributes to the improved control of food
safety and spoilage, e.g., by quantifying the effect of storage and
distribution on microbial proliferation via the HACCP system.
Recently, predictive microbiology has been accepted as a tool to
define safety of (certain) food products in Europe. Predictive
models are also being applied in software packages (e.g., ComBase
[UKeUS], Sym’Previus [FR] and the Pathogen Modeling Program

(PMP) [US]), useful in both academic and industrial environments.
In addition, predictive models can be an essential tool for risk
control in the optimization of food engineering processes.

First publications in the domain of predictive microbiology
mainly focused on the growth and inactivation dynamics of species
exposed to (a constant value of) a single environmental condition.
This behavior is described by a primary predictive model, which
quantifies microbial cell count as a function of time. In the classic
approach, bacterial growth is modeled autonomously by a logistic
type equation. These models do not include mechanistic knowl-
edge to describe the transitions between the different growth
phases. The stationary phase, for example, is described by including
the asymptotic value, i.e., the maximum cell number, as a param-
eter. Primary models developed in the 90s are still widely used but
mainly empirical (see, e.g., Baranyi and Roberts (1994), Buchanan,
Whiting, and Damert (1997), Zwietering, Jongenburger,
Rombouts, and van ’t Riet (1990) and Geeraerd, Herremans, and
Van Impe (2000)).

In a second step, secondary models are developed which
describe the influence of changing environmental conditions on
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primary models, i.e., on its parameters. Most currently used
secondary models can be subdivided in four classes: (i) square root
models (e.g., Ratkowsky, Olley, McMeekin, and Ball (1982),
Ratkowsky, Lowry, McMeekin, Stokes, and Chandler (1983) and
Ross, Ratkowsky, Mellefont, and McMeekin (2003)), (ii) cardinal
parameter models (e.g., Rosso, Lobry, and Flandrois (1993), Rosso,
Lobry, Bajard, and Flandrois (1995) and Sautour, Dantigny, Divies,
and Bensoussan (2001)), (iii) neural networks (e.g., Geeraerd,
Herremans, Cenens, and Van Impe (1998) and Panagou, Tassou,
Saravanos, and Nychas (2007)), and (iv) response surface models
(e.g., Baranyi, Ross, McMeekin, and Roberts (1996) and Geeraerd
et al. (2004)). According to Geeraerd et al. (2004), secondary
models fall into two groups. A first group consists of models which
include (some) biologically or graphically interpretable parameters
and can be extended toward more environmental factors via
a multiplicative approach. Furthermore, they are parsimonious and
have a high fitting quality. The second group of secondary models,
i.e., neural networks and response surface models, do not presume
a priori knowledge of the underlying relationship. Thesemodels are
characterized by a high flexibility.

Most existing primary and secondary models enable an accurate
description of microbial dynamics under (non-stressing) dynamic
conditions for liquid systems. However, the last decennium, it has
beenwidely recognized that these models fail when applied to real
food products and under more realistic, more stressing conditions.
The above models consider rather simple liquid systems, mainly
controlled by temperature, pH, water activity, acids and preserva-
tives. However, more complex elements, like background flora,
microbial competition, stress and stress adaptation, and physico-
chemical properties of the food structure are rarely taken into
account. This is described as the completeness error, and is consid-
ered as (one of) the largest source(s) of error in predictive micro-
biology (McMeekin & Ross, 2002).

Based on this generally accepted analysis, a quest for more
mechanistically-based predictive models has started (Brul,
Mensonides, Hellingwerf, & Teixeira de Mattos, 2008; McMeekin
et al., 2008). Examples can be found for different aspects of
microbial dynamics. (i) Van Impe, Poschet, Geeraerd, and
Vereecken (2005) introduced a novel class of macroscopic predic-
tive microbial growth models which do take (micro)biological
phenomena, governing the microbial growth process, into account.
Their work focused on the transition of the exponential growth
phase to the stationary phase, which can be induced through toxic
product accumulation and/or substrate exhaustion. This modeling
approach was also employed to describe the more complex case
study of coculture inhibition of Listeria innocua mediated by lactic
acid production of Lactococcus lactis (Poschet, Vereecken, Geeraerd,
Nicolaï, & Van Impe, 2005). (ii) In order to unravel the initial lag
phase dynamics, focus is on the individual cell dynamics and how
they relate to the overall population behavior (see, e.g., McKellar
(2001), Baranyi (2002) and Baranyi, George, and Kutalik (2009)).
Baranyi and Pin (2001) constructed a mathematical relation
between the stochastic individual cell dynamics and a determin-
istic model describing the population. Individual-based modeling
techniques have been developed to gain insights into single cell and
population lag phase dynamics (Prats, Giro, Ferrer, Lopez, & Vives-
Rego, 2008; Standaert et al., 2007). (iii) When microbial pop-
ulations are exposed to (severe) stress (e.g., heat and acid), sigmoid
growth curve patterns are often disturbed and typical primary and
secondary models and modeling approaches are no longer valid.
These unexpected growth curves can be attributed to microbial
population heterogeneity, induced by the environmental condi-
tions. Although population heterogeneity is a widely recognized
phenomenon of particular interest for, e.g., food safety and quality,
only few attempts have been made to include population

heterogeneity in the modeling of microbial kinetics (see, e.g.,
Nikolaou and Tam (2005) and Van Derlinden, Bernaerts, and Van
Impe (2009, 2010)). (iv) In structured (solid) foods, microbial
growth can strongly depend on the position in the food and the
general assumption of homogeneity cannot be accepted, i.e., space
must be considered as an independent variable. Dens and Van Impe
(2001) presented a model that takes into account the variability of
microbial growth with respect to space. The presented model
describes two phenomena: local evolution of biomass and transfer
of biomass through the medium.

(Unexpected) cell dynamics observed in heterogeneous envi-
ronments and/or under stress conditions due to heterogeneous
populations and stress adaptation phenomena cannot be explained
using the macroscopic approach generally applied in predictive
microbiology. In the future, predictive microbiology must take the
modeling one step further by including more micro- and/or
mesoscopic information to understand these cell dynamics. The
applicability and reliability of existing models under more realistic
conditions will definitively be improved by looking inside the black
box and unraveling the underlyingmechanisms (Brul &Westerhoff,
2007). Incorporating intracellular information in predictivemodels,
following a topedown systems biology approach, will result in
more widely applicable mechanistic models.

The intrinsic complexity of biochemical processes, which
consist of extensive reaction networks with numerous metabolites,
is not reflected by the simple macroscopic level models, classically
used in predictive microbiology. However, while more knowledge
about the underlying mechanisms of biochemical processes
becomes available, new opportunities arise, for instance by using
(microscopic level) metabolic network models to build next
generation predictive models. These metabolic networks are
a blueprint of the reactions that occur inside the micro-organisms
during the biochemical process. Metabolic flux analysis (MFA) is
an excellent tool to gain in-depth insight (i.e., at the intracellular
level) on the impact of environmental conditions on (the fluxes in)
the cell metabolism and growth dynamics. Relevant (extracellular)
process conditions and key metabolic reactions/pathways can be
identified, which is valuable information in the development of
predictive models for more complex and realistic situations.
Exploitation of MFA as a technique to develop accurate mathe-
matical models in the field of predictive microbiology is a largely
unexplored domain which is presented in this paper.

The methodology presented in this manuscript is at the basis of
the work published in Vercammen, Van Derlinden, and Van Impe
(2011).

2. Methodology

Fundamental microbial research, in general, is conducted at
three levels, i.e., the macroscopic, the mesoscopic and the micro-
scopic level. At the macroscopic level, the overall population char-
acteristics and behavior are studied. Macroscopic predictive models
describe growth and inactivation dynamics of populations. As said
in the introduction, macroscopic level models are able to accurately
predict population dynamics under non-stressing conditions in
liquid food model systems. For process control, monitoring and
optimization purposes, macroscopic models are preferred as they
have a rather simple structure, i.e., a limited number of model
components and parameters. The mesoscopic level studies small
populations, part of the population like subpopulations or colonies
in structured environments. Due to environmental or population
heterogeneity, differences in the microbial response are observed
and all cells e or their dynamics e can no longer be assumed as
identical. Examples of more mesoscopic models can be found in
McKellar (1997) and Skandamis, Davies, McClure, Koutsoumanis,
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