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a b s t r a c t

Ordinary least squares (OLS) one-step regression and the sequential procedure were applied to estimate
the dynamic thermal microbial inactivation parameters of Escherichia coli K12 using the differential form
of five different models. The best-performing models based on their statistical assessment were, in order:
Geeraerd et al. sublethal (7 parameters), Geeraerd et al. stress adaptive (7 parameters); reduced Geeraerd
et al. (6 parameters), Weibull (6 parameters), and the first-order model (5 parameters) all integrated with
the secondary Bigelow model. The statistics used to evaluate the models were: lowest AICc, minimum
root mean square error (RMSE); distribution of residuals; asymptotic relative errors of parameters; scaled
sensitivity coefficients; and sequential estimation. RMSE for the first-order model was more than twice
that for Geeraerd et al. sublethal model, showing that the first-order model was inappropriate for these
data. The optimum reference temperature (Tref) for the secondary model (Bigelow type) was interpolated
by estimating all other parameters for different fixed Tref values, and choosing Tref that minimized the
correlation coefficient between AsymDref and z. The advantage of finding the optimum Tref was that it
minimized the relative error for AsymDref. Scaled sensitivity coefficients of the Geeraerd et al. sublethal
model revealed that a) none of the parameters was linearly correlated with others, and b) that the most
easily estimated parameters were the three initial microbial concentrations logN(0), followed by
AsymDref , z, logCc(0), and sublethal b. The sequential method was also applied to estimate updated
parameter values by successively adding each data point. Sequential results showed that each parameter
reached a constant after w2.5 log reductions. These results show that a) parameters may be affected by
rate of heating, and b) dynamic microbial inactivation parameters can be estimated accurately and
precisely, directly from few experiments, potentially eliminating the need to apply isothermal parame-
ters to dynamic industrial processes.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Transposition of results obtained from static to dynamic
conditions has shown that adjustment of the initial mathematical
structure is required (Bernaerts, Servaes, Kooyman, Versyck, & Van
Impe, 2002; Dolan, 2003). A similar study has illustrated that
inactivationmodel equations and their associated parameter values
obtained under static acid stress conditions cannot be used directly
for predicting inactivation under dynamic conditions limiting the

value and reliability of the developed mathematical tools (Janssen
et al., 2008). Dolan (2003) and Valdramidis, Geeraerd, Bernaerts,
and Van Impe (2008) have also highlighted that even if the
results are excellent by the use of isothermal inactivation param-
eters one does not know the actual values of non-isothermal esti-
mates. These observations pinpoint the importance of further
studying parameter identification techniques under dynamic
conditions representative of a realistic (processing) environment.

Several microbial studies revealed that microbial adaptations
are evident at different types of stressful environments (e.g.,
Skandamis, Stopforth, Yoon, Kendall, & Sofos, 2009; Valdramidis,
Geeraerd, & Van Impe, 2007; Velliou et al., 2011). These environ-
ments have an impact on the physiological state of the microor-
ganisms and can result in an increase of their microbial resistance
or a change to their adaptation time. Recent investigators tried to
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deal with these phenomena by adjusting or extending widely used
mathematical structures. In the field of microbial inactivation
modeling some examples include the development of (i) a model
building block related to the microbial physiology (k<phys>)
(Valdramidis et al., 2007), (ii) a factor describing the sublethal
thermal history (Stasiewicz, Marks, Orta-Ramirez, & Smith, 2008),
(iii) an extension of the Weibullian-log logistic model by the
introduction of a logistic adaptation factor (Corradini & Peleg,
2009).

Combining knowledge coming from parameter identification
techniques applied under dynamic conditions and the model
structure properties proposed to handle the microbial physio-
logical state is a challenging issue. The objectives of this work
were: (1) to demonstrate that non-isothermal microbial inacti-
vation kinetic model parameters could be accurately and
precisely estimated using one-step nonlinear regression
following an ordinary least squares and a sequential approach;
and (2) to determine based on statistical indices the best-
performing out of five differential models some of which can
account for the microbial sublethal/induced thermal resistance.
This paper comes out of a presentation (Dolan, Valdramidis, &
Mishra, 2011).

2. Materials and methods

2.1. Experimental

Previously published data (Valdramidis et al., 2008) were used.
Briefly, liquid samples of 100 mL with initial Escherichia coli K12
microbial concentration w109 cfu/mL were heated at three
different rates (fast: 1.64, intermediate: 0.43, or slow: 0.15 �C/min),
in duplicate, from 49.5 �C to 60 �C over a total experimental time
from 11 to 60 min.

2.2. Calculation

2.2.1. Models
Five different types of models were used for this study: (1)

a first-order (parameters were log10N(0)1, log10N(0)2, log10N(0)3,
Dref, and z), (2) a Weibull (refer to its differential form; parameters
were log10N(0)1, log10N(0)2, log10N(0)3, d, z, and p) (Albert and
Mafart, 2005) (3) the reduced model of Geeraerd, Herremans, &
Van Impe (2000) not incorporating the so called tailing effect
(hereafter called the “Geeraerd et al. model”; parameters were
log10N(0)1, log10N(0)2, log10N(0)3, AsymDref, and z), (4) the Geeraerd
et al. model with a stress adaptive rate term (additional parameter
k1), and (5) the Geeraerd et al. model with a sublethal integral term
(same parameters as #3, plus additional parameter b). The Geer-
aerd et al. model reads as follows:

dNðtÞ
dt

¼ k$NðtÞ0dlogNðtÞ
dt

¼ � 1
ln10

$k (1)

dlogCcðtÞ
dt

¼ � 1
ln10

$kmax (2)

where k is

k ¼ kmax$

�
1

1þ 10logCc

�
(3)

and kmax is given by the Bigelow model

kmax ¼ ln10
AsymDref

$exp
�
ln10
z

�
T � Tref

��
(4)

N is the microbial cell density cfu/mL, Cc is related to the phys-
iological state of cells [e], kmax is the specific inactivation rate [1/
min], AsymDref is the asymptotic decimal reduction time at refer-
ence temperature Tref, and z is the degrees Celsius temperature
change causing a 10-fold change in AsymDref.

Table 1
Statistical ordinary least squares (OLS) results for all models (n ¼ 96). Parameters were estimated for all the heating rates simultaneously.

Model # of parameters SSE (log10(cfu/mL))2 RMSE (log10(cfu/mL)) Optimum Tref (�C) AICc

1) First-order 5 17.18 0.435 57.983 �152.2
2) Weibull 6 7.63 0.291 58.681 �227.8
3) Geeraerd et al. 6 4.40 0.221 58.117 �280.6
4) Geeraerd et al. with k(<phys>) 7 3.66 0.203 63.246 �296.0
5) Geeraerd et al. with s 7 3.46 0.197 62.177 �301.3
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Fig. 1. Observed (markers) and fitted (lines) values for Geeraerd et al. with sublethal
(model #5) (n ¼ 96).
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Fig. 2. Residual scatter plot for Geeraerd et al. with sublethal (model #5). Data markers
for the six runs are identical to those in Fig. 1.
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