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Seeds from different coffee species and coffee from different continents or countries have very distinct chemical
composition. However, the differences between genotypes grown at micro-regional levels with similar
geographical characteristics are still unclear. In this study, we highlighted the need of using metabolite profiling
instead of the usual targeted analysis as amore powerful tool to describe the slight differences between coffees of
the same species grown in close origins. Thus, our study focused on finding potential metabolite markers to
describe differences ofCoffea arabica L. genotypes (MundoNovo and Bourbons) grown inBrazilian coffee produc-
ing municipalities (Lavras, Santo Antônio do Amparo—SAA, and São Sebastião da Grama—SSG). Using the meta-
bolomics approach, 44 metabolites were identified, and some showed great potential for origin and genotype
differentiation. The Partial Least Square Discriminant Analysis— PLS-DAmodel showed that the SAA coffee sam-
ples had themost differentiatedmetabolite profile (approximately 95% accuracy) compared to the other munic-
ipalities. The samples from Lavras and SGG had similar profiles (model accuracy of approximately 50%). Potential
metabolitemarkers for the SAA samples included galactinol, fructose,malic acid, oxalic acid, D-glucose, D-sorbitol,
galactinol, and myo-inositol. The model used to differentiate the Bourbon and the MN genotype showed 100%
accuracy indicating very different metabolite profiles. The features that were most influential in differentiating
genotypewere: 5-CQA, oxalic acid, galactinol, nicotinic acid, caffeine, and caffeic acid (Bourbon) andmyo-inositol,
quinic acid, malic acid, fructose, and D-glucose (MN). Enhancing subtle differences in the data by combining infor-
mation from GC-Q/MS and multivariate analysis resulted in the identification of coffee origins and genotypes as
well as the identification of potential markers.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Coffee is oneof themost common commercially traded commodities
in the world. The demand for specialty coffees in the market has been
growingmuch greater compared to regular coffee and are characterized
by high quality, great flavor potential after roasting, absence of any
defects, and their relationship to origin, crop or specific genotypes. Pri-
marily, coffee quality has been determined by genetic (Villarreal et al.,
2009), environmental (Alonso-Salces, Serra, Reniero, & Héberger,
2009; Avelino et al., 2005; Joët et al., 2010), and post-harvest (Bytof

et al., 2007; Duarte, Pereira, & Farah, 2010; Joët, Laffargue, et al., 2010;
Joët, Salmona, Laffargue, Descroix, & Dussert, 2010; Knopp, Bytof, &
Selmar, 2005) methods. Although Brazil is the largest worldwide coffee
producer, its coffee is known as regular and flat. Conversely, coffees
originating from different areas, such as Central America, Africa, and
Asia, are very well known for their high quality and their sensory attri-
butes. Coffee beans originating from these areas have very differentme-
tabolite profiles (Choi, Choi, Park, Lim, & Kwon, 2010). Because these
regions are located in different parts of the world, it is expected that
they would have quite different metabolite profiles due to significant
environmental differences. Coffea arabica L. and Coffea canephora
species also have large differences in their chemical composition
(Alonso-Salces et al., 2009; Wei et al., 2012). Therefore, we highlighted
the need for analyses that are capable of discerning samples from ori-
gins that are geographically very close to each other and between geno-
types from the same species. Studies have already been conducted
comparing coffees from two different locations, with different altitude
levels and slope exposures in Costa Rica (Avelino et al., 2005). Although
the results were obtained from coffee samples harvested during one
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agricultural crop season (2003), consistent differences in their chemical
and sensory profiles were reported. These results indicated that some of
the most influential metabolites used to differentiate between the geo-
graphical locations included caffeine, trigonelline, chlorogenic acids,
and sucrose as potential markers. In addition, Bertrand et al. (2008),
used chemometric analysis to differentiate between coffee varieties
grown in different terroirs and harvested in one agricultural crop; they
found that fatty acids and chlorogenic acids are consistent markers
that can be used to differentiate coffee samples.

Some studies used to describe metabolic pathways of coffee seeds
have focused on environmental conditions (altitude, temperature, rain-
fall, and irradiance) during one agricultural crop season (2006) at the
Reunion Islands (Joët, Laffargue, et al., 2010; Joët, Salmona, et al.,
2010; Joët et al., 2009). In addition to describing environmental interfer-
ence on coffee seed metabolism, these studies have determined consis-
tent and important pathways for chlorogenic acid and polysaccharide
formation.

A recent studyhas beendevelopedby Figueiredo et al. (2013),which
describes the potential for quality of coffee genotypes grown in different
Brazilian regions. Their results involved sensory and chemical attributes
that were consistent, even though the coffee sampleswere harvested in
one agricultural crop season.

In addition, Alonso-Salces et al. (2009) used chemometric tools
for the botanical and geographical characterization of green coffee
(C. arabica L. and C. canephora) during three different crop seasons.
These authors also concluded that there were no significant differences
in the chemical composition of the coffee beans between years of
harvest.

A better understanding of the chemical composition of coffee geno-
types settled in different sites at Brazil could bring new challenges and
provide motivation for changes in the production chain. Additionally,
establishing marker metabolites will help with the classification of cof-
fee origins, which has recently become a central component for agricul-
tural promotion. Additionally, these markers will provide additional
support infighting against forgery and coffee adulteration at the region-
al, national and international levels.

Metabolomics is a comprehensive and non-target analysis that
covers a broad range ofmetabolites; it plays a key role in describing pre-
cursor compounds responsible for quality and improving strategies for
coffee breeding programs. These chemical precursor compounds re-
lease more than 800 new aromatic constituents (Leroy et al., 2006)
that affect the flavor of the roasted coffee beans. Because of the large
number of chemical compounds that can be found in coffee beans, qual-
ity cannot be attributed to a single compound or a specific environmen-
tal parameter. Differences in metabolite profiles are complicated and
not easy to explain. Many more studies are needed to understand the
relationship between quality and metabolite profiles.

Recently, it has become easier to distinguishmaterials from different
origins in the world or different species using sophisticated metabolite
profiling tools, such as HPLC (Alonso-Salces et al., 2009), GC-Q/MS
(Du, Wang, Yu, Liu, & Huang, 2011; Frost, Nyamdari, Tsai, & Harding,
2012) and NMR (Wei, Furihata, Hu, Miyakawa, & Tanokura, 2010; Wei
et al., 2012). Because rapid analytical methods are needed to determine
coffee origins, this study focused on showing the potential of usingme-
tabolite profiling of coffee seeds coupledwithmultivariate analysis, PCA
and PLS-DA, as techniques to identify coffee samples according to their
botanical and geographical origins in Brazil. We also focused on finding
key metabolites that are responsible for such differences.

2. Materials and methods

2.1. Experimental site, biological material and processing

Experiments were performed on seeds of four C. arabica L. genotypes,
i.e., MN and Bourbons BIACJ9, BFT, and BFP, grown in three different
coffee producing municipalities of Brazil (Table 1). Three independent

biological samples of coffee fruits were selectively harvested and chosen
if completely ripe to ensure their uniformity, integrity and high quality.
Then, the samples were processed using the wet method and dried at
11% (w.b.) according to methods established by Borém, 2008. After
drying, the seeds were frozen, ground using an IKA A11 Basic Analytical
mill, lyophilized, and then kept under−80 °C for further extraction.

2.2. Metabolite analysis

In total, 10 mg of the lyophilized tissue powder was extracted twice
in 515 μl aqueous methanol 60% (v/v) in a 2.0 ml microcentrifuge tube
containing internal standards (0.18 μl of 45 mg·ml−1 adonitol and
0.37 μl of 0.59 mg·ml−1 13C6 trans-cinnamic acid). Themicrocentrifuge
tubes were incubated in a water bath set to 70 °C for 1 min and then
transferred to a dry plate set to 70 °C while they were mixed. The
mixtures were cooled down to room temperature and centrifuged
at 2199 rad·s−1 for 5 min at room temperature. The supernatant
from the first extraction phase was transferred into a new tube.
The powder remaining in the tube was mixed with 515 μl aqueous
methanol 60% (v/v), mixed for 15 min using sonication, and centri-
fuged at room temperature. The supernatant was added to the first
extraction phase, and the total extract mixture was complete. A sub-
sample (50 μl) of each extract was transferred to a glass micro-insert,
taken to the derivatization, and then analyzed usingGC-Q/MSaccording
to the methodology described by Frost et al. (2012). Finally, data peaks
obtained from the analysis of each sample were aligned using an
in-house software program (MetaLab), which is available at http://
aspendb.uga.edu.

2.3. Data analysis

The dataset was pretreated before the chemometric models were
constructed to correct possible variations in the spectra that were not
related to the samples' nature. These included variations in analysis
conditions, such as environmental temperature and relative humidity,
apparatus type, personnel, sample positioning in the equipment, and
all possible perturbations. Thus, GLSW (alpha = 0.01) and MC were
used to preprocess each class of dataset prior to the model calculation.
The GLSW technique uses auto vectors and auto values of a covariance
matrix to lower and smooth signals of inference or sample differences
that should be equal (Wise et al., 2006). MC was used to prevent the
most distant values from having a greater influence on the results com-
pared to data values relatively close to each other. Pretreatment on the
dataset was performed using MATLAB 7.13 (MathWorks™, MA, United
States) and PLS Toolbox 6.5 (Eigenvector Research, Inc., WA, United
States). The pretreated datasets were analyzed by PCA and PLS-DA,
using the online software MetaboAnalyst (Xia, Mandal, Sinelnikov,
Broadhurst, & Wishart, 2012; Xia, Psychogios, Young, & Wishart,
2009), which is available at http://www.metaboanalyst.ca/Metabo
Analyst/faces/Home.jsp. PLS-DA is a variation of PLS analysis. PLS-DA
is considered a pair comparison analysis and is built to classify a group
of samples as belonging or not belonging to a specific class (Berrueta,
Alonso-Salces, & Héberger, 2007). The results from PLS-DA analysis
are obtained by creating PLS regression model, from the original vector
y, which contains dummy variables.

Table 1
Location of coffee plots used as experimental sites.
Adapted from Figueiredo et al. (2013).

Growth location Latitude Longitude Elevation

Lavras 21°14′43″S 44°59′59″W 950 m
SAA 20°56′47″S 44°55′08″W 1050 m
SSG 21°44′50″S 46°55′33″W 1300 m
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