
Comparison between artificial neural networks and Hermia’s models
to assess ultrafiltration performance

María-José Corbatón-Báguena, María-Cinta Vincent-Vela, José-Marcial Gozálvez-Zafrilla,
Silvia Álvarez-Blanco ⇑, Jaime Lora-García, David Catalán-Martínez
Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de Valencia, C/Camino de Vera s/n, 46022 Valencia, Spain

a r t i c l e i n f o

Article history:
Received 13 April 2016
Received in revised form 4 July 2016
Accepted 5 July 2016
Available online 11 July 2016

Keywords:
Crossflow ultrafiltration
Artificial neural networks
Fouling
Modeling

a b s t r a c t

In this work, flux decline during crossflow ultrafiltration of macromolecules with ceramic membranes
has been modeled using artificial neural networks. The artificial neural network tested was the multilayer
perceptron. Operating parameters (transmembrane pressure, crossflow velocity and time) and dynamic
fouling were used as inputs to predict the permeate flux. Several pretreatments of the experimental data
and the optimal selection of the parameters of the neural networks were studied to improve the fitting
accuracy.
The fitting accuracy obtained with artificial neural networks was compared with Hermia pore blocking

models adapted to crossflow ultrafiltration. The artificial neural networks generate simulations whose
performance was comparable to that of Hermia’s models adapted to crossflow ultrafiltration.
Considering the computational speed, high accuracy and the ease of the artificial neural networks
methodology, they are a competitive, powerful and fast alternative for dynamic crossflow ultrafiltration
modeling.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, the interest in the use of ultrafiltration (UF)
technology has focused on wastewater treatment, recovery of high
value compounds from wastewater currents, and the production of
drinking water and process water [1]. However, membrane fouling
is the main obstacle to a wider application of UF processes as it
implies great energy consumption and high operation and mainte-
nance costs [2]. Therefore, a better understanding of membrane
fouling is the key to solve the problems arising in the application
of this technology [1]. The characterization of membrane fouling
makes possible to estimate the capacity and efficiency of the
membrane under certain conditions.

Artificial neural networks (ANNs) have been used in the last
years in a wide range of scientific and business fields [3–6]. One
of the main advantages of ANNs is their capability to learn and rec-
ognize trends in a series of input and output data without having
into consideration prior assumptions or hypothesis about the rela-
tionships governing the process parameters [7]. Compared to the
conventional mathematical models used to predict the evolution
of permeate flux decline with time during membrane filtration

processes, it is noteworthy that these models have certain
shortcomings: they involve complex mathematical equations,
experimental data is sometimes necessary to infer the input
parameters, their empirical equations are only valid in the range
of experimental conditions tested and should be fitted for each
experimental condition at a time [7]. On the contrary, ANNs are
able to accurately predict the complex non-linear relationships
between input and output variables of a system and to simulate
all the experimental conditions tested at once. For these reasons,
some authors concluded that ANNs are a competitive, powerful
and fast alternative for dynamic crossflow UF modeling [7–17].
One of the latest applications of ANNs corresponds to the dynamic
and steady-state modeling [7] for process control purposes [8],
especially in the membrane technology field. Some previous works
available in the literature have successfully developed and
employed ANNs for different applications from microfiltration
and UF to nanofiltration and reverse osmosis and different feed
solutions [9–17]. For instance, Chakraborty et al. [11] studied the
UF of aqueous solutions containing chromium (VI) and correlated
the permeate flux and the membrane performance index to differ-
ent operating conditions (feed flow rate, transmembrane pressure,
polymer to metal ratio and pH) using an ANN model. They devel-
oped a feed-forward ANN consisting of two hidden layers and
based on a Bayesian algorithm. These authors found more accurate
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predictions by means of the ANN model in comparison with those
obtained using a conventional multiple regression analysis. Solei-
mani et al. [12] predicted the permeate flux and fouling resistance
after the UF of oily wastewaters by applying ANN models. They
created the feed-forward ANN with the Levenberg-Marquadt
back-propagation algorithm and they used the transmembrane
pressure, the crossflow velocity, the feed temperature and the pH
as input variables. They obtained an excellent agreement (values
of coefficient of determination greater than 0.99) between the pre-
dicted values and the experimental data. Purkait et al. [13] investi-
gated the prediction of permeate flux obtained in nanofiltration
and reverse osmosis treatments of leather plant effluents. They
applied a multi-layered feed-forward ANN with back-propagation
algorithm for both batch and crossflow experiments. The optimal
ANN consisted of two hidden layers and provided mean absolute
error values lower than 1%. Finally, Rahmanian et al. [17] designed
an ANN to predict the experimental data obtained from a wastew-
ater micellar-enhanced UF process. These authors tested a three-
layer feed-forward ANN using the Levenberg-Marquadt algorithm
for training and seven variables as input (transmembrane pressure,
pH, electrolyte concentration, feed SDS concentration, etc.). They
observed that there was a good agreement between the ANN
model results and the experimental data, being the ANN developed
an effective tool to predict complex non-linear relationships.

In this paper, feed-forward ANNs with one intermediate layer
and based on a Levenberg-Marquadt training algorithm were cre-
ated to predict the permeate flux decline with time during the
crossflow UF of polyethylene glycol (PEG). In addition, the influ-
ence of two pretreatment methods (the normalization of the out-
put variable and the introduction of a fouling indicator as an
additional input) of the experimental data on the fitting accuracy
of the ANNs models was evaluated. Since only few papers available
in the literature deal with the comparison between the goodness of
fit provided by the ANN models and the classical ones [18,19], in

this paper ANN predictions were compared with those of Hermia’s
classical fouling models, once the optimum ANN parameters were
determined and the training of the network with a set of UF exper-
imental data was performed.

2. Theory

2.1. Hermia’s models adapted to crossflow ultrafiltration

Hermia’s models adapted to crossflow UF are four semi-
empirical models based on constant pressure filtration laws [20],
whose general equation is as follows (Eq. (1)):

d2t

dV2 ¼ KDF � dt
dV

� �n

ð1Þ

where t is the filtration time, V is the permeate volume, KDF is a phe-
nomenological coefficient for dead-end filtration and n is the char-
acteristic model constant.

The classical dead-end filtration models were modified by Field
et al. [21] to account for the back-transport mass transfer occurring
in crossflow filtration by including the permeate flux obtained at
the steady-state [22–24]. This modification results in the following
general differential equation Eq. (2).

� dJP
dt

¼ KCF � ðJP � JPSSÞ � J2�n
P ð2Þ

where JP is the permeate flux at a given time, JPSS is the permeate
flux when steady-state was achieved and KCF is a phenomenological
coefficient for crossflow filtration. The value of the characteristic
model constant (n) depends on the type of fouling mechanism
and thus, Hermia distinguished four different types of fouling
named as complete blocking (n = 2), intermediate blocking (n = 1),
standard blocking (n = 3/2) and gel layer formation (n = 0).

Nomenclature

A membrane area (m2)
A0 membrane porous surface (m2)
a specific resistance of the gel layer (m/kg)
ap radius of the solute molecule (m)
CFV crossflow velocity (m/s)
Em average deviation (dimensionless)
Emax maximum deviation (dimensionless)
Emin minimum deviation (dimensionless)
J0 initial permeate flux (L/m2�h)
Jp permeate flux (L/m2�h)
Jpss steady-state permeate flux (L/m2�h)
Kc constant for complete blocking model for crossflow

filtration (m�1)
KCF phenomenological coefficient—constant
Kgl constant for gel layer formation model for crossflow

filtration (s/m2)
KS constant for standard blocking model (m�1/2�s�1/2)
Ki constant for intermediate blocking model for crossflow

filtration (m�1)
n constant for fouling mechanism (dimensionless)
Neur number of neurons in the intermediate layer of the

ANNs
Norm normalization of the permeate flux
Weights initialization of the weights in the ANNs
Pret data pretreatment
R2 square regression coefficient (dimensionless)
R(t) fouling indicator (m�1)

Rm membrane resistance (m�1)
RE relative error (dimensionless)
T time (s)
TMP transmembrane pressure (MPa)

Greek letters
l viscosity (kg/m�s)
q density (kg/m3)
vm solute concentration over the membrane surface

(dimensionless)
w solute form factor (dimensionless)
DL and DU margins used to give the network limited extrapola-

tion capability in Eq. (10) (dimensionless)

Abbreviations
ANN artificial neural network
FF ANN Feed Forward Artificial Neural Network
LSD Least Significant Difference
MF microfiltration
MP ANN Multilayer Perceptron Artificial Neural Network
MSE mean square error
MWCO molecular weight cut-off (g/mol)
NF nanofiltration
NMSE normalized mean square error
PEG polyethylene glycol
RMSE root mean square error
UF ultrafiltration
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