ELSEVIER

Contents lists available at ScienceDirect

Separation and Purification Technology

journal homepage: www.elsevier.com/locate/seppur

Development of high-performance SO₂ trap materials in the low-temperature region for diesel exhaust emission control

Xuecheng Liu^a, Yugo Osaka^b, Hongyu Huang^{a,*}, Akio Kodama^b, Zhaohong He^a, Huhetaoli^a, Xixian Yang^a, Yong Chen^a

- a Chinese Academy of Science, Guangzhou Institute of Energy Conversion, No. 2 Nengyuan Rd., Wushan, Tianhe District, Guangzhou 510640, PR China
- ^b Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan

ARTICLE INFO

Article history:
Received 23 October 2015
Received in revised form 23 January 2016
Accepted 3 February 2016
Available online 4 February 2016

Keywords:
Sulfur dioxide
Manganese dioxide
High performance
Grain model
Sulfate rate constant

ABSTRACT

Growing concern about sulfur dioxide (SO_2) poisoning NO_x removal catalysts has resulted in the development of desulfurization materials for SO_2 trap. In this study, a series of high-specific-surface-area manganese oxide (HSSA MnO₂) were selected as desulfurization materials and characterized by nitrogen adsorption and SEM. HSSA MnO₂ has good SO_2 capture performance over a wide temperature range. At low temperature, SO_2 capture capacity and adsorption rate increase with the specific surface area and HSSA MnO₂ showed high SO_2 capture performance. The effect of temperature on sulfate rate of HSSA MnO₂ can be explained by the grain model. The gradient of sulfate rate constant decreases with increasing the reaction temperature, and there is a sudden drop at 500 °C. The SO_2 capture performance of regenerated HSSA MnO₂ decreases sharply because of physical damage by calcination at high temperature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sulfur dioxide (SO_2) from diesel exhaust is one of the main air pollutants. Besides, SO_2 from exhaust gas always poisons the sulfur-sensitive NO_x removal catalysts, especially the lean NO_x trap (LNT) in the diesel exhaust system. It is reported that the capacity of LNT is strongly reduced by SO_2 , because sulfates are more stable than nitrates [1–4]. In tradition, the main way to remove SO_2 from diesel exhaust is fuel upgrades by hydrodesulfurization. However, it is still a challenge to find appropriate solutions to prevent NO_x removal catalyst from being exposed to SO_2 for the sulfur content of diesel varying from tens of ppm to hundreds of ppm.

Currently, compact SO_2 trap upstream of NO_x conversion device has been proposed to improve the longevity of NO_x removal catalysts against SO_2 poisoning in the diesel exhaust system [5–9]. The SO_2 discharge is about 160 g (10 ppm sulfur in diesel) for about 30,000 km of one year for a diesel engine, and the levels of sulphation for SO_2 trap should be at least 20% of weight increase. However, the traditional materials, such as calcined limestone [10], MgO [11] and hydrotalcite-like compounds [12,13], don't have enough SO_2 trap capacity for their application in compact SO_2 trap.

Therefore, new materials with sufficient performances should be developed.

With the diesel engine technology developed, the maximum temperature of diesel exhaust is decreased and the temperature is limited from 200 °C to 500 °C. Unfortunately, limited studies have been reported in the literature on desulfurization materials with low temperature activation. Kasaoka et al. [14] focused on improving the reaction activity using complexes based on CuO at 350 °C. Tseng and Wey [15] investigated the SO₂ oxidation activity of copper oxide supported on activated carbon at the range of limited temperature between 200 °C and 450 °C. Rubio and Izquierdo [16] studied the SO₂ removal performance of coal fly ash based carbons at flue gas conditions and the amount of SO2 removed is 13 mg/g by the Lada activated sample at 100 °C and the present of 1000 ppmv SO₂, 5% O₂, 6% H₂O gas conditions after 24 h. Nishioka and Yoshida [17] investigated the reaction activity of SO₂ trap catalyst with a noble metal under low temperature conditions and the amount of trapped sulfur is about 18 g/2 l-catalyst at 250 °C. Kylhammar et al. [18] investigated the SO₂ trapping capacity of CeO₂-based materials at 250 °C and the fresh sample can storage about 19 mg_{SO2}/g_{CeO2}. In these studies, the SO₂ trap capacities of materials are very small in low temperature range.

In the previous studies [19], it has been found that the $CaCO_3$ materials have good reactivity with SO_2 at $650\,^{\circ}C$. However, the sulfation rate declines under low temperature conditions for the

^{*} Corresponding author. E-mail address: huanghy@ms.giec.ac.cn (H. Huang).

Nomenclature

P SO₂ capture performance per unit mass, g_{SO2}/g_{material}

s weight, mg

t time, s

X reaction ratio, %

M amount of material, g/mol

C molar concentration of SO₂, mol/cm³

reaction rate constant, cm⁴/(mol s)

r radius at reaction surface, cm

R radius of spherical grain, cm

 ε void fraction, %

reason that the sulfate reaction activity may be limited by the decarbonation. The SO_2 trapping performance of materials with different physical properties (for example particle diameter, pore diameter distribution and specific surface area) has been investigated [20–22]. From these studies, under low temperature conditions the materials with high specific surface area and simple reaction mechanism exhibit good SO_2 trapping performance. Manganese oxide with high specific surface area (HSSA MnO_2) and a simple sulfate reaction path ($MnO_2 + SO_2 \rightarrow MnSO_4$) was focused on as a candidate for the materials of desulfurization filter in low temperature region [23,24].

Furthermore, in the present work, basic SO_2 capture performance of was measured by a thermogravimetry (TG) device. Then, the influences of specific surface area on SO_2 capture performance of HSSA MnO_2 at low temperature were investigated under a wide temperature range of diesel exhaust. The sulfate rate constant was estimated at various reaction temperatures by using grain model. Finally, SO_2 capture performance of fresh and regenerable HSSA MnO_2 was investigated.

2. Experimental

2.1. Materials

The HSSA $\rm MnO_2$ used for experiments was supplied by Japan Material and Chemical Co., Ltd. These materials were obtained by the acid treatment of raw material. In the experiments, HSSA $\rm MnO_2$ materials with specific surface area 155 $\rm m^2/g$, 200 $\rm m^2/g$, 257 $\rm m^2/g$ and 300 $\rm m^2/g$ were selected. Commercial $\rm MnO_2$ from Kanto Chemical Co., Inc. (specific surface area of 20 $\rm m^2/g$) was used as a reference.

In this study, the specific surface area, pore volume distribution, and surface structure were analyzed to assess the physical characteristics of the target materials. The specific surface area of these samples was measured by the Brunauer–Emmett–Teller (BET) with the nitrogen adsorption uptake at the boiling point of nitrogen of 77 K using a capacitive measurement method. The pore-diameter was measured by nitrogen physisorption under normal relative pressure of 0.1–1.0 using the Barrett–Joyner–Halenda (BJH) method. Surface observation of the samples was conducted by scanning electron microscopy (SEM). The particle size distribution of the selected materials was determined by Malvern laser particle size analyzer.

Fig. 1 shows the distribution of pore diameter of HSSA MnO_2 with different specific surface area. The specific surface area of selected samples is $155~m^2/g$, $200~m^2/g$ and $257~m^2/g$, respectively. From the results of Fig. 1, the relatively large pore-diameter of all samples ranges from 40~Å to 100~Å. The micrograph of HSSA MnO_2 is displayed in Fig. 2. The formed-grain HSSA MnO_2 is seen to be made up of non-uniformly smooth spherical particles with a small size of 1 μ m and the particle size of the materials ranges from $0.76~\mu$ m to $2.51~\mu$ m, as seen in Table 1.

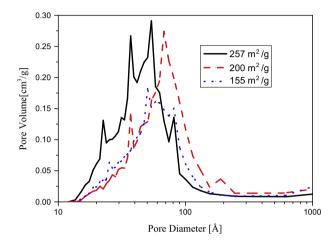


Fig. 1. Distribution of pore diameter of HSSA MnO_2 with different specific surface area: $155~m^2/g$, $200~m^2/g$ and $257~m^2/g$.

2.2. Thermogravimetric measurements

Thermogravimetry (TG) was used in this study to measure the effectiveness of the sulfate reaction of HSSA MnO₂. Fig. 3 shows a schematic drawing of the TG analysis experiment. The amount 50 mg of a sample on a quartz crucible was slowly (10 K/min) heated to the target temperature in the atmosphere of nitrogen, and maintained this condition for about 2 h. Reactant gas flow (500 ppm SO₂ in base N₂) was controlled by mass flow controller. The total flow gas rate was 2 l/min. During SO₂ adsorption, the gas stream was passed over the sample at target temperature for 2 h. The reaction temperature of the TG experiment ranged from 100 °C to 600 °C.

The SO_2 capture performance of samples was measured. The SO_2 capture performance per unit mass P and the conversion of samples $X_{(t)}$ are expressed by the following equations:

$$P = \frac{s_t - s_0}{s_0} [g_{SO_2}/g_{MnO_2}]$$
 (1)

$$X_{(t)} = \frac{M_{MnO_2}}{M_{SO_2}} \cdot \frac{s_t - s_0}{s_0} \ [g_{SO_2}/g_{MnO_2}] \eqno(2)$$

P is the SO₂ capture performance per unit mass [g_{SO2}/g_{MnO2}], s_0 is the initial weight [mg], and s_t is the weight after t seconds [mg], M_{MnO2} is the molar mass of MnO₂ [g/mol], M_{SO2} is the molar mass of SO₂ [g/mol].

3. Results and discussion

3.1. Basic sulfate performance of HSSA MnO₂ particle

Fig. 4 shows the influence of sulfate reaction temperature on SO_2 capture performance of HSSA MnO_2 . The SO_2 capture

Download English Version:

https://daneshyari.com/en/article/639948

Download Persian Version:

https://daneshyari.com/article/639948

<u>Daneshyari.com</u>