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a b s t r a c t

The interactions between the cake and depth filtration of poly-disperse spherical particles is examined by
comparing experimentally measured cake permeability to the permeability predictions of analytical
models. In the experiments, the influence of the cake forming history on the cake permeability is inves-
tigated, where the parameters as (i) different filtration materials, (ii) test suspension flow rates, and (iii)
particle concentrations in the suspension are varied. The permeability models are given as product of pre-
set constant, porosity function and square of characteristic particle size. For the poly-disperse porous
media, the characteristic particle size has to account for the distribution of particle sizes which is typi-
cally accomplished through the use of various moments of the distribution. Clearly, the size distribution
function of particles forming the cake has to be utilized which is obtained after correcting the original
distribution function of particles used in the test suspension for the particles which pass through the
cake. This implies that the particles have to be counted after the test suspension passes the filtering mate-
rial. Following this framework, a set of experiments is carried out to determine the permeability of poly-
disperse cake. For each experiment, the permeability is also evaluated analytically using four different
long-established models in combination with different averages for the particle diameter of the poly-
disperse particle sample, trying to identify an averaging rule for which the analytical predictions are most
close to the experimental results.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Filtration is widely used to separate particles from gases or liq-
uids in numerous industries including petroleum, food, pharma-
ceutical and automotive, to name just a few. In the majority of
these applications, in addition to particle entrapment within the
porous filter medium itself, a layer of particles, called a cake, is
formed at the upstream surface of the filtering medium and con-
tributes substantially to the flow resistance of the filter. Prediction
of cake permeability is clearly an important aspect of filtration pro-
cess design. There are two major difficulties with predicting cake
permeability. First, in the majority of applications, the particles
comprising the cake are poly-disperse in size requiring determina-
tion of an average, effective, particle size if a mono-disperse model
is to be employed. Second, in many applications, the cake is formed
in the second stage of the filtration process, with the first being
depth filtration. Finally, some particles pass all the way through

the filter and cake, so that the cake permeability is due to a particle
size distribution different from that of the upstream suspension.

For slow flows, the fluid velocity is proportional to the pressure
gradient resulting from viscous interaction with the surfaces of the
medium. That is, the flow obeys Darcy’s law. The proportionality
constant is the ratio of the permeability to the fluid viscosity [1].
In the groundwater sciences the expression hydraulic conductivity
[2,3] and in the cake filtration community the expression (specific)
cake resistance [4,5] are commonly used to denote, respectively,
the permeability or its inverse. Many different expressions for
the permeability exist in the literature. Common to all is that the
permeability is expressed as a product of a preset constant, specific
geometrical function and particle size. The best known example is
perhaps the Carman-Kozeny relation [6]. The geometrical function
in the permeability models is calculated from either equivalent
medium consisting of parallel tubes further corrected for
non-circular cross section and the fluid flow tortuous paths
[1,4,7–10], or by representing the porous medium as a periodic
arrays of mono-disperse spheres [11,12]. The preset constant in
the permeability models varies stipulating that there are additional
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morphological parameters that should be taken into account in
predicting the permeability. A broad variability of the Kozeny con-
stant is summarized in Tien and Ramarao [13], where it is argued
that same porosity functionality is used for porous media which
are morphologically very different, i.e. spherical, cylindrical, fibers
or consolidated media of different types.

Although porous media are mainly heterogeneous, an attempt
can be made to generalize models developed for mono-disperse
media to poly-disperse ones, by exploiting averaged, effective size
scales (diameters), Dm, and Dmn, based on the particle size distribu-
tion function moments, Mm, and ratios of moments, Mmn (see next
section for notations and explanations of the moments). Poly-
disperse models using the three means, harmonic [14], geometric
[15,16], and arithmetic [17], are also reported in the literature.
Models using many varieties of moment ratios are available. Nota-
bly in the filtration literature, all the ranges of average particle
diameters from D21 up to D43 have been used, i.e., D21 in [18],
D31 in [19], D43 in [20], and the Sauter diameter, D32 in
[4,5,14,21–23]. Endo and Alonso [19] formulated a model for a
log-normal distribution also including a shape factor for non-
spherical particles and a so-called void function. Their result is
similar to using D31 with log-normally distributed sizes in the
Kozeny-Carman formula. Additionally, in some studies the cut off
diameter of 10% smallest particles [3], and the median particle size
diameter [15] are used to calculate the poly-disperse medium per-
meability. The different permeability models and particle size
averages which give the best agreement to the experimental data
are used in these comparisons. It can be seen that there is a large
variability in average particle size used, implying that in poly-
disperse media, besides the permeability model constant, the par-
ticle size distribution affects the permeability value.

In this study, poly-disperse filter cake permeability is measured
experimentally and compared to the predictions of mono-disperse
permeability models. In the models, the particle diameter is
replaced by an average, effective particle diameter found from
the particle size distribution function. For a broad particle size dis-
tribution, calculated average particle diameters can vary as much
as two orders of magnitude, which produce even higher differences
in calculated permeability as it is a quadratic function of the
selected particle size average. Due to the fact that some of the
smallest particles pass through the filter, the particle size distribu-
tion function of suspended particles differs to some extent from
the distribution function in the filtration cake; the same applies
for the averaged diameters. Hence, the goal of this investigation
is twofold: (i) to perform a detailed experimental study of the
influence of the history of the cake formation on its permeability
(e.g., cake formed on top of various porous filter media, cake
formed from higher and lower suspension concentration, etc.),
and (ii) to use a detailed set of experimental data for poly-
disperse media to determine a proper averaging rule (a moment)
which, for the available permeability models, provides the best
fit to the experimental results.

2. Permeability model

The slow flow through a porous medium is described by Darcy’s
law, where the permeability quantifies how easily fluid can flow
through a porous medium. The permeability is an intrinsic material
property of the porous medium depending only on the medium
geometry [23] including porosity, tortuosity and particles sizes
and their distribution functions [24–26], and not on the nature of
the fluid. In predicting the permeability, probably the most used
empirical model is the Kozeny-Carman formula. It is based on a
combination of Hagen-Poiseuille and Darcy law for steady, laminar

and incompressible flow through a bundle of circular capillary
tubes [17]. The famous formulation is given as [6]:

K ¼ /3

kKð1� /Þ2
d2
p ð1Þ

in which / is the porosity, dp is the particle diameter and kK is the
Kozeny constant, an empirical constant which is often reported hav-
ing different values greatly underlining the uniqueness of Eq. (1)
and suggesting that the medium morphology should be taken into
account in the permeability predictions [13]. This becomes clearer
once looking onto an alternate form of Eq. (1) which is given by
Panda and Lake [17]:

K ¼ /3

2sð1� /Þ2S2V
ð2Þ

in which s is the tortuosity, and SV is the specific surface area equal
to the ratio of the particle surface to the particle volume, i.e. equal
to SV = 6/dp for a spherical particle of diameter dp. Eq. (2) has been
modified in many different ways, one being by setting different val-
ues for tortuosity [17], or by introducing additional parameters as
threshold porosity to account for close packing when void spaces
start losing connectivity. Another permeability model for spherical
particles has been formulated by Happel [27], where:

K ¼ d2
p

18u
3� 4:5u1=3 þ 4:5u5=3 � 3u2

3þ 2u5=3 ð3Þ

with u = 1�/ being the fraction of solid phase.
In Eq. (2), the specific area, SV, is defined for the mono-disperse

spherical particles which is directly related to the particle diame-
ter. Similarly, the specific area can be defined for the poly-
disperse sample, where from the particle number distribution
function, the distribution moment of order m and m is an integer,
Mm, is calculated from known weights, wi, and particle diameters,
dp,i. The weight of each particle size is calculated from the number
of particles, ni, and total number of particles in the sample, N:

Mm ¼
X
i

wid
m
p;i; where wi ¼ ni

N
ð4Þ

(i.e. form = 2,M2 is arithmetic average of particles surface area).
The ratio of two moments is defined as Mmn =Mm/Mn, and from the
moments, the average particle diameter is calculated from
Dm =Mm

1/m and Dmn =Mmn
1/(m�n). The specific area (expressed per

unit volume) can be calculated from the distribution moments as
follows:

SV ¼ A
V
¼ 6

P
iwid

2
p;iP

iwid
3
p;i

¼ 6
1
D32

ð5Þ

So SV is proportional to the reciprocal of the Sauter diameter and
can be used directly in the Kozeny equation, Eq. (2). This general-
ization shows at least two limitations, the first being the value of
the tortuosity, which in the poly-disperse sample, may be changed
by small particles nesting between larger ones. The second limita-
tion is caused due to the flow dissipation in heterogeneous med-
ium producing an effective medium which is different from one
that consists of particles of equal sizes. Thus, other average particle
diameters can fit better in the Kozeny-Carman formula for the per-
meability of poly-disperse media. A similar reasoning can be
applied to the Happel permeability model, as well as two addi-
tional empirical models for poly-disperse media, proposed by
Rumpf and Gupte [28] and Garcia et al. [29] using the Sauter and
harmonic mean diameters respectively:

KRG ¼ /5:5

5:6
D2

32 and KG ¼ 0:11/5:6d2
h: ð6Þ
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