Separation and Purification Technology 165 (2016) 173-178

Contents lists available at ScienceDirect

Separation and Purification Technology

journal homepage: www.elsevier.com/locate/seppur

A simple technology for phosphorus recovery using acid-treated concrete sludge

Kenji Okano^{a,*}, Yasuhisa Yamamoto^a, Hiroyuki Takano^b, Tsuyoshi Aketo^b, Kohsuke Honda^a, Hisao Ohtake^a

^a Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan ^b Research & Development Center, Taiheiyo Cement Co., 2-4-2 Osaku, Sakura, Chiba 285-8655, Japan

ARTICLE INFO

Article history: Received 31 December 2015 Received in revised form 30 March 2016 Accepted 31 March 2016 Available online 1 April 2016

Keywords: Acid-treated concrete sludge Anaerobic sludge digestion liquor Bifunctional adsorption-aggregation agent HCI-soaking Phosphorus recovery Wastewater treatment

ABSTRACT

A simple technology for phosphorus (P) recovery from aqueous solution has been developed using acidtreated concrete sludge (A-CS) as a bifunctional adsorption-aggregation agent. Dried particles of concrete sludge (CS), an alkaline waste containing hydrated cement and fine aggregates, were soaked in 1.3 M HCl at a concentration of 0.1 g/mL for 60 min. The HCl-soaking treatment solubilized alkaline substances such as Ca(OH)₂ and CaCO₃, thereby releasing approximately 87% Ca²⁺ from the CS particles to the acid solution. When A-CS was added to 500-mL synthetic anaerobic sludge digestion liquor containing 273 mg/L of phosphate (P_i) at the Ca/P molar ratio of 2.5, A-CS showed 20 times higher P_i removal efficiency than that of untreated CS particles. Although A-CS could precipitate 72% P_i in 5-min free sedimentation, the Ca²⁺-rich liquid fraction of A-CS alone led to the precipitation of only 48% P_i. This suggests that the solid fraction of A-CS can serve as an auxiliary aggregation agent. When P_i recovery was examined using anaerobic sludge digestion liquor from a full-scale wastewater treatment, A-CS could recover 96% P_i at the Ca/P molar ratio of 2.5. Citrate-soluble P₂O₅ accounted for 19% of the dry weight of the recovered P_i product. The levels of heavy metals such as As, Cd, Pb, Ni, and Cr in the recovered P_i product were much below their regulatory standards for fertilizers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Phosphorus (P) is an essential element for all living organisms. It is an indispensable component of cell structure and plays a key role in cellular metabolism [4]. Since P cannot be replaced by any other element in biochemical processes, humans ultimately rely on P availability. Today, P is mostly obtained from mined rock phosphate (P_i) [3]. While high-grade rock P_i is depleting on a global scale, the inefficient use of P_i leads to the eutrophication problem in natural bodies of water [8,10]. Considerable attention has been paid to P recycling from wastewater to mitigate the anthropogenic mobilization of P [13].

To fully realize P recycling, it is essential to develop a simple, cost-effective technology for P recovery. Previously, we have

Abbreviations: P, phosphorus; P_i, phosphate; A-CSHs, amorphous calcium silicate hydrates; NMR, nuclear magnetic resonance; CS, concrete sludge; A-CS, acid-treated concrete sludge; WWTP, wastewater treatment plant; XRF, X-ray fluorescence; P-XRD, powder X-ray diffractometory; C-P₂O₅, citrate-soluble phosphate; ACP, amorphous calcium phosphate.

* Corresponding author.

E-mail address: okano@bio.eng.osaka-u.ac.jp (K. Okano).

reported a novel technique for P recovery from aqueous solution using amorphous calcium silicate hydrates (A-CSHs) [8]. A-CSHs were chemically synthesized using widely-available, inexpensive materials such as siliceous shale and Ca(OH)₂. NMR analysis revealed that the A-CSHs consisted of short-length silicate polymers, linked to each other through ion bindings with Ca²⁺. It has also been demonstrated that A-CSHs can serve not only as a P_i adsorbent but also as an aggregation agent in aqueous solution [7]. P_i removed by A-CSHs exhibited better settleability, filterability, and dewaterability than P_i precipitated with conventional CaCl₂ and Ca(OH)₂. In addition, no significant carbonate inhibition was observed in P_i removal by A-CSHs.

Concrete sludge (CS) is an alkaline waste material consisting of hydrated cement, fine aggregates, and water that is available at construction sites where more concrete materials are generated than required. Conventionally, CS has been used as a landfill material after solid–liquid separation followed by neutralization with a strong acid [11]. However, since this is costly and wasteful, it is desirable to develop an alternative technology that can contribute to the valorization of CS for the cement and construction industry [1,11].

In the present study, we developed a simple P recovery technology from aqueous solution using acid-treated CS (A-CS) as a bifunctional adsorption-aggregation agent. When CS particles were soaked in HCl, their ability to remove P_i from aqueous solution was markedly enhanced. The P_i recoverability of A-CS was confirmed in laboratory experiments using anaerobic sludge digestion liquor from a full-scale wastewater treatment plant (WWTP).

2. Materials and methods

2.1. Acid treatment of CS

Unused CS was taken from a ready-mix concrete plant, washed with water, and dewatered using a filter press (AK175, Kvokuto Sangyo Co., Ltd., Tokyo, Japan). The filter cake was subjected to air drying at room temperature and ground using a mortar and pestle to obtain CS particles. The CS particles were soaked in 1.3 M HCl at a concentration of 0.1 g/mL for 60 min to form A-CS slurry. During the HCl-soaking treatment, the mixture was continuously stirred by a magnetic stirrer at 600 rpm at room temperature. The pH of the mixture was monitored using a digital pH meter (DT-1023, Able Co., Tokyo, Japan). Samples were taken from the mixture at various time intervals and filtered through a 0.22µm-pore-size Millex-GV filter (Merck Millipore, MA, USA). The concentration of Ca²⁺ in the filtrate was determined using the Diacolor Liquid Ca kit (Toyobo Co. Ltd., Osaka, Japan) in accordance with the manufacturer's instructions. When required, the A-CS slurry was separated into solid and liquid fractions by centrifugation at 2000g at room temperature for 10 min. To study the effect of the surface electric charge of particles on P_i settleability, 5 mL A-CS slurry was mixed with 100 mL 1 M NaCl. The mixture was stirred by a magnetic stirrer at 200 rpm at room temperature for 30 min. Then, solids were recovered from the mixture by centrifugation at 2000g at room temperature for 10 min before being used for P_i settling experiments.

2.2. Characterization of CS particles

The chemical composition of CS particles before and after acid treatment was determined using an X-ray fluorescence (XRF) spectrometer (ZSX100e, Rigaku Co., Tokyo, Japan). Acid-soaked samples were dried at 100 °C for 12 h prior to analyses. Powder X-ray diffraction (P-XRD) analysis was performed using a RINT-2100 diffractometer (Rigaku). XRD patterns were recorded using Nifiltered Cu K_{α} radiation (step size, 0.02°; scan range, 2 θ = 10–60°). Electron microscopy was performed at 1.5 kV using a JSM-7600F scanning electron microscopy (SEM) system (JEOL Ltd., Tokyo, Japan). Before the P-XRD and electron microscopic analyses, acid-soaked samples were dried overnight under vacuum.

2.3. P_i recovery experiments

P_i recovery experiments were performed using a synthetic anaerobic sludge digestion liquor consisting of 392 mg of KH₂PO₄, 1.89 g of NH₄Cl, and 3.36 g of NaHCO₃ per liter of deionized water

Table 1

Chemical composition of CS particles and other solid samples.^a

[8]. The initial pH of the synthetic anaerobic digestion liquor was approximately 7.6. When required, the pH was adjusted to 8.0, 8.5, 9.0, or 9.5 using 1 M NaOH. Either 0.5 g of untreated CS particles or 5 mL of A-CS slurry (0.1 g CS /mL) was added to 500 mL of synthetic anaerobic digestion liquor with a Ca/P molar ratio of 2.5 in a 500 mL Pyrex conical beaker. The reaction mixture was stirred by a magnetic stirrer at 200 rpm at room temperature. The pH of the mixture was continuously monitored using a digital pH meter as mentioned above. Samples were taken at various time intervals and filtered through a 0.22-µm-pore-size Millex-GV filter (Merck Millipore). The filtrate P_i was determined by the molybdenum blue method described by Murphy and Riley [6]. Total P was determined as P_i after autoclaving a sample at 121 °C for 30 min. P_i removal experiments were also carried out using CaCl₂ at the same Ca²⁺ concentration as that of the liquid fraction of A-CS slurry.

After 60 min of P_i removal, the reaction mixture was transferred to a 500-mL graduated cylinder of 5.5 cm diameter to assess the settleability of the removed P_i . After 5 min of free sedimentation, 400 mL of the supernatant (80% of the original volume) was gently removed using a siphon. The total P concentration in the supernatant was determined as described above. Settleability was evaluated by determining the percentage of total P that remained in the cylinder after siphoning the supernatant. Settleability was also evaluated by visual examination.

P_i recovery experiments were also carried out using anaerobic sludge digestion liquor, which was rejected water from a membrane-type solid–liquid separator for digested sludge at a full-scale WWTP. Approximately 2.0 L of the anaerobic sludge digestion liquor was fed into a 3.0-L acrylic batch reactor. The initial pH of the anaerobic sludge digestion liquor was adjusted to 8.5 after A-CS slurry was added at a Ca/P molar ratio at 2.5. The reaction mixture was continuously stirred by a mechanical agitator (PSH540-001P, Oriental Motor Co., Ltd., Tokyo, Japan) at 200 rpm.

After 60 min of P_i removal, the reaction mixture was transferred to a 2.0-L graduated cylinder of 8.0 cm diameter and subjected to 20 min of free sedimentation. After siphoning 1.4 L of the supernatant, the remaining 0.6 L of slurry was filtered through a Whatman No. 3 filter paper (GE Healthcare Life Sciences, NJ, USA). P_i recovered by the A-CS slurry was dried at 105 °C for 24 h. Citrate-soluble P (C-P₂O₅) was determined as P_i solubilized by 2% citric acid [5]. Arsenic (As) content was determined by an atomic absorption spectrophotometer (SpectraAA 220, Agilent Technologies Inc., CA, USA). Cadmium (Cd), lead (Pb), and nickel (Ni) contents were determined by a inductively coupled plasma (ICP) mass spectrometer (7500cx, Agilent Technologies Inc.). Chromium (Cr) content was determined by an ICP optical emission spectrometer (Spectroblue, Spectro, Germany).

3. Results

3.1. Chemical characterization of CS particles

The chemical composition of the CS particles was determined by XRF analysis (Table 1). The main components of the CS particles were SiO_2 (19.3 mass%) and CaO (41.0 mass%). The CS particles also

Sample	Mass% on a dry weight basis							
	MgO	Al_2O_3	SiO ₂	P ₂ O ₅	SO ₃	CaO	Fe ₂ O ₃	Others
CS particles Solid fraction of A-CS slurry Recovered P _i product	1.5 0.7 0.5	6.3 16.2 7.3	19.3 50.8 18.4	0.2 0.3 22.3	1.6 0.5 0.3	41.0 12.6 33.0	2.3 4.8 2.6	27.8 14.0 15.6

^a Values represent the means for three independent experiments.

Download English Version:

https://daneshyari.com/en/article/639981

Download Persian Version:

https://daneshyari.com/article/639981

Daneshyari.com