Accepted Manuscript

Single layer drying kinetics of papaya amidst vertical and horizontal airflow

Patchimaporn Udomkun, Dimitrios Argyropoulos, Marcus Nagle, Busarakorn Mahayothee, Serm Janjai, Joachim Müller

PII: S0023-6438(15)00371-0

DOI: 10.1016/j.lwt.2015.05.022

Reference: YFSTL 4678

To appear in: LWT - Food Science and Technology

Received Date: 28 November 2014

Revised Date: 4 May 2015

Accepted Date: 11 May 2015

Please cite this article as: Udomkun, P., Argyropoulos, D., Nagle, M., Mahayothee, B., Janjai, S., Müller, J., Single layer drying kinetics of papaya amidst vertical and horizontal airflow, *LWT - Food Science and Technology* (2015), doi: 10.1016/j.lwt.2015.05.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Single layer drying kinetics of papaya amidst vertical and horizontal
2	airflow
3	
4	Patchimaporn Udomkun ^{1,*} , Dimitrios Argyropoulos ¹ , Marcus Nagle ¹ , Busarakorn
5	Mahayothee ² , Serm Janjai ³ , Joachim Müller ¹
6	
7	1. Universität Hohenheim (440e), Institute of Agricultural Engineering, Tropics and
8	Subtropics Group, Stuttgart, 70599, Germany
9	2. Silpakorn University, Faculty of Engineering and Industrial Technology,
10	Department of Food Technology, Nakhon Pathom, 73000, Thailand
11	3. Silpakorn University, Faculty of Science, Department of Physics, Solar Energy
12	Research Laboratory, Nakhon Pathom, 73000, Thailand
13	
14	*Corresponding author. Tel.: +49 711459 22840; Fax: +49 711459 23298
15	E-mail address: Patchimaporn.Udomkun@uni-hohenheim.de
16	
17	Abstract
18	The impact of airflow direction, namely through-flow and over-flow modes, on
19	drying kinetics of osmotically-pretreated papayas was investigated in a convective-type
20	dryer under varied conditions (temperature, humidity and velocity). The Newton model
21	was used to describe thin-layer drying characteristics and the dependence of drying air
22	parameters on the drying constant (k) was expressed by an Arrhenius-type relationship. It
23	was found that a more uniform airflow distribution in the through-flow chamber resulted in
24	higher product temperature as well as faster drying rate, especially during the initial stage
25	of drying. For both airflow modes, drying kinetics was most significantly influenced by
26	temperature and velocity of the air, whereas the specific humidity had less effect on the
27	drying rate. The value of k increased in parallel with temperature and velocity of the drying
28	air, whereas it was reduced by increasing humidity. A model incorporating the conditions
29	of drying air was developed for each airflow mode, which can help with optimization of
30	practical drying operations.
31	

Keywords Air distribution, drying rate, convective drying, through-flow, over-flow

Download English Version:

https://daneshyari.com/en/article/6400708

Download Persian Version:

https://daneshyari.com/article/6400708

Daneshyari.com