Accepted Manuscript

Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material

Sanjaysinh Makwana, Ruplal Choudhary, Navneet Dogra, Punit Kohli, John Haddock

PII: S0023-6438(14)00060-7

DOI: 10.1016/j.lwt.2014.01.043

Reference: YFSTL 3732

To appear in: LWT - Food Science and Technology

Received Date: 23 October 2013

Revised Date: 26 January 2014

Accepted Date: 29 January 2014

Please cite this article as: Makwana, S., Choudhary, R., Dogra, N., Kohli, P., Haddock, J., Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material, *LWT - Food Science and Technology* (2014), doi: 10.1016/j.lwt.2014.01.043.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2 3	Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material
4 5	Sanjaysinh Makwana ^a , Ruplal Choudhary ^a *, Navneet Dogra ^b , Punit Kohli ^b , John Haddock ^c
6	^a Department of Plant, Soil and Agricultural Systems
7	^b Department of Chemistry and Biochemistry
8	^c Department of Microbiology
9	Southern Illinois University, Carbondale
10	*Corresponding Author Address: 1205 Lincoln Drive, Room 176, Carbondale, IL 62901 USA
11	ABSTRACT
12	Use of antimicrobial coatings on food packaging is one of the important technologies of active
13	packaging for improving food safety. There is growing demand for natural antimicrobials
14	because of fear of adverse health effects of synthetic preservatives. The objectives of this study
15	were to compare antibacterial properties of free and nanoencapsulated cinnamaldehyde in
16	solution; polylactic acid (PLA) surfaces cast with cinnamaldehyde; and glass and PLA surfaces
17	coated with cinnamaldehyde nano-liposomes. Cinnamaldehyde was nano-encapsulated by lipid
18	bilayers of polydiacetylene – N-hydroxysuccinimide (PDA-NHS) nano liposomes and
19	immobilized on glass slides and PLA films. Glass surfaces immobilized with nano-encapsulated
20	cinnamaldehyde showed significant antibacterial activity against Escherichia coli W1485 and
21	Bacillus cereus ATCC 14579, with reductions of 2.56 log ₁₀ CFU/ml and 1.59 log ₁₀ CFU/ml
22	respectively in 48 hours. PLA films cast with cinnamaldehyde also showed significant
23	antibacterial activities against E. coli W1485 (2.01 log10 CFU/ml reduction) and B. cereus (4.81
24	log ₁₀ CFU/ml reduction). However, when the liposomal encapsulated cinnamaldehyde was
25	immobilized on PLA films, it did not show any antibacterial activity. Glass surfaces coated with
26	nano-encapsulated cinnamaldehyde may be used as an active packaging material in preserving
27	liquid foods; however, further study is required to improve antimicrobial activities of PLA
28	surfaces.
29	Keywords: Antimicrobial coating; cinnamaldehyde; Polylactic acid film; nano-liposome
30	encapsulation; food packaging.

31

Download English Version:

https://daneshyari.com/en/article/6403362

Download Persian Version:

https://daneshyari.com/article/6403362

Daneshyari.com