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a b s t r a c t

An iterative hybrid performance improvement approach integrating artificial neural network modelling
and Pareto genetic algorithm optimisation was developed and tested. The optimisation procedure, code
named NNREGA, was tested for tuning pilot scale Continuous Variable Discharge Concentrator (CVD) in
order to simultaneously maximise recovery and upgrade ratio of gold bearing sulphides from a poly-
metallic massive sulphide ore. For the tests the CVD was retrofitted during normal operation on the flota-
tion tailings stream. On the basis of mineralogical data showing strong pyrite-gold association in the
flotation tailings, iron assays were used as an indicator of CVD performance on recovery of gold bearing
sulphides. Initially, 17 pilot scale statistically designed tests were conducted to assess metallurgical per-
formance. The Matlab 2010a software was used to train and simulate back propagation ANNs on experi-
mental results. Regression models developed from simulation data were used to formulate the objective
functions used to optimise the CVD using the NSGA-II genetic algorithm. Results show that the NNREGA
procedure provides an efficient way of exploring the design space to learn the relationship between inter-
acting variables and outputs and is capable of generating the operating line, which is a non-dominated
recovery/grade line. The paper forms a basis for future work aiming to model and scale up processing
equipment.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The mineral processing industry has not yet managed to lever-
age the processing edge presented by the high mass yield
Continuous Discharge Centrifugal (CDC) concentrators, introduced
in the early 1990s, due to lack of knowledge and experience in
operating and optimising these multi variable concentrators. The
dominant CDC concentrators include the Knelson Continuous
Variable Discharge Concentrator (CVD), Falcon C, Kelsey Jig and
Multi Gravity Separator. These machines are distinct from conven-
tional batch centrifugal concentrators in that whilst batch concen-
trators have to be stopped to discharge concentrates the
continuous machines continuously discharge concentrates whilst
concentrating is progressing. Continuous concentrate discharge
introduces additional machine variables, which require manip-
ulation to achieve optimum performance. To date, no optimisation
strategy exists for operators to move from current plant settings to

optimum performance. Previous mineral processing optimisation
employed the classical preference based approach, which imposes
weighting on objectives and yields a single optimum point instead
of generating an optimum operating line, thereby failing to exploit
the competing grade/recovery relationship.

The Knelson CVD concentrator has four interacting machine
variables [1–3], making it difficult to tune them to achieve opti-
mum metallurgical performance. For the CVD, the objective is to
maximise both grade and recovery as a function of machine vari-
ables; pinch valve open duration (PVO), pinch valve closed dura-
tion (PVC), bowl speed (BS) and fluidisation flow rate, and ore
specific variables subject to some process constraints. McLeavy
[2] showed that for the CVD 6 the optimum fluidisation flowrate
was around 30.3 l/min, such that if kept within this range it can
be eliminated as a variable. Each CVD unit is also unique owing
to variation in length and material type used for the pneumatic
lines [2], and for every new installation the set points have to be
determined prior to optimisation. In addition, the mechanism of
concentration of the CVD is poorly understood making it difficult
to formulate both mechanistic and phenomenological models to
fully describe the relationship between response and variables.
Thus most of the models developed to date have been
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phenomenological, which are site and machine specific [4,5]. As a
result, operators do not know how to efficiently and systematically
tune the operational variables to improve metallurgical perfor-
mance. The approach that varies one variable at a time, currently
used by operators, is potentially misleading when there are multi-
ple interacting operating variables [6] and such an approach might
lead to operating the CVD at sub-optimum variable settings.

This study explores application of Pareto’s non-dominated
approach to multi-objective optimisation in order to simultane-
ously maximise both grade and recovery for the CVD without a pri-
ori weighting objectives. Since mineral processing involves gangue
rejection in order to produce a high-grade concentrate, maximizing
concentrate grade can only be achieved at the expense of a reduc-
tion in recovery. An iterative hybrid performance improvement
approach that incorporates artificial neural network modelling
and genetic algorithm was developed and tested at operating con-
ditions of a mill which processes polymetallic massive sulphide
ore. The objective was to generate the operating line, which is a
non-dominated recovery/grade line independent of economic
factors.

2. General concept

Fig. 1 is an illustration of Pareto’s non-dominated approach to
solving multi objective optimisation problems. For a candidate to
be included in the optimum solution; it should either be no worse
than the other for all objectives or should be strictly better than the
other in at least one of the objectives. In Mineral processing we aim
to maximise both concentrate grade and recovery. Using domi-
nance for ordering the 5 solutions: comparing solutions 1–5, solu-
tion 2 is better than 3 in both objectives and therefore dominates
solution 3. Solution 5 is better in both objectives to solution 4
and therefore dominates solution 4. Comparing solutions 1 and 2,
it cannot be said which one is better than the other since solution
1 is better than 2 in grade, but worse in recovery. So solutions 1
and 2 are considered non-dominated. Comparing solutions 2 and
5, it cannot be said which of the solutions is better than the other,
since solution 5 is better than solution 2 in recovery, but worse in
grade. So, solutions 2 and 5 are considered non-dominated with
respect to each other.

Due to the transitive nature of dominance, since solution 2 is
non-dominated by solutions 1 and 5 is non-dominated by solution
2 therefore solution 5 is non-dominated by solution 1. A Pareto
front is a set of such non-dominated solutions for an optimisation
problem and defines the operating line in this study. Optimisation
of CVD performance involves simultaneous maximisation of both
upgrade ratio/grade and recovery subject to three CVD machine
variables (BS, PVO, PVC) keeping the fluidisation water velocity
constant.

Fig. 2 shows a schematic of the hybrid optimisation approach
code named NNREGA. It involves defining the region contained by
the maximum and minimum control variables level by conducting
scoping tests based on mass yield. This is followed by exploration
of the design region using statistically designed experiments so as
to determine how each variable, and the combination of variables
affects recovery and upgrade ratio. The experimental results are
used to train artificial neural network models to learn the relation-
ship between predictors (bowl speed and pinch valve duration and
response variables.

The trained artificial neural networks are used to further
explore the design space in order to understand the nature of the
response surface, significantly reducing the number of necessary
experimental tests to be conducted and consequently the cost
and time for the test program. Because ANN models do not provide
much information about the relationship between variables and
response, in order to define the fitness (objective) function for
genetic algorithm optimisation and better understand the effect
of variables on response, regression models of recovery and
upgrade ratio are developed from ANN simulation data. Instead
of a single optimum point, the resultant solution is a set of non-
dominated solutions of upgrade ratio and recovery, which gives
the optimum recovery/upgrade ratio curve. Experimental val-
idation of these results is conducted and the necessary adjust-
ments done based on the validated results.

3. Materials and methods

A pilot scale Knelson CVD 6 was tested on flotation tailings at
the Myra Falls processing plant at Vancouver Island, Canada.
Fig. 3 shows a schematic of the flowsheet and the flotation tailings
stream where the CVD was installed for the tests.

3.1. Sample and preliminary tests

The ore comes from a polymetallic massive sulphide deposit
with varying proportions of pyrite. The principal gold carrier is
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Fig. 1. Illustration of non-dominance using a population of five candidate solutions.
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Fig. 2. Flow of the NNREGA optimisation technique.
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