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Formapping soil properties in three dimensions the simplest option is to choose a series of depth intervals, and to
calibrate a two-dimensional (2-D) model for each interval. The alternative is to calibrate a full three dimensional
(3-D)model that describes the variation in lateral and vertical direction. In 3-Dmodelingwemust anticipate pos-
sible changes with depth of the effects of environmental covariates on the soil property of interest. This can be
achieved by including interactions between the environmental covariates and depth. Also we must anticipate
possible non-stationarity of the residual variance with depth. This can be achieved by fitting a 3-D correlation
function, and multiplying the correlation between two points by the residual standard deviations at these two
points that are a function of depth. In this paper various 3-D models of the natural logarithms of SOC are com-
pared with 2-D depth-interval specific models. Five environmental covariates are used as predictors inmodeling
the lateral trend. In the 3-Dmodels also depthwas used as a predictor, either categorical, with categories equal to
the depth intervals (3-Dcat), or continuous (3-Dcon). The covariance of the residuals in 3-D ismodeled by a sum-
metric covariance function. Both stationary and non-stationary variance models are fitted. In the non-stationary
variancemodels the residual standard deviations aremodeled either as a stepwise function or as a linear function
of depth. In the 2-Dmodels the regression coefficients differed largely between the depth intervals. In the 3-Dcat
model extreme values for the regression coefficients were leveled out, and in the 3-Dcon model only the coeffi-
cients of NDVI and aspect changed with depth. The 3-Dcon model with a residual standard deviation that is a
stepwise function of depth had the largest residual log-likelihood and smallest AIC among all 3-D models.
Based on the cross-validation root mean squared error (RMSE) there was no single best model. Based on the
mean and median of the standardized squared error (MSSE, MedSSE) the 2-D models outperformed all 3-D
models. Overestimation of the prediction error variance by the kriging variance was less strong with the non-
stationary variance models compared to the stationary variance models. 3-D modeling is required for realistic
geostatistical simulation in spatial uncertainty analyses.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decades numerous papers have been published on the
mapping of soil organic carbon (SOC)(see Minasny et al., 2013 for a
review). This volley of papers illustrates the importance attached to an
accurate three-dimensional picture of carbon in soil, in order to assess
the role of soil as a terrestrial sink of carbon (Kirschbaum, 1995; Lal,
2004). A common problem in mapping SOC using legacy soil data is
that the sampled depth intervals are not constant. This is because pedol-
ogist preferred to collect bulked soil samples from pedogenic horizons.
As a consequence the reported SOC concentrations are average

concentrations of depth intervals that differ between the sampling loca-
tions. To use these data in three dimensional (3-D)mapping the follow-
ing three-step approach is very common(see for instance Malone et al.,
2009; Liu et al., 2013; Adhikari et al., 2014). In the first step at the sam-
pling locations an equal-area smoothing spline function is fitted to de-
scribe the variation of SOC with depth. In the second step, the fitted
function is used to compute average SOC concentrations for the depth
intervals of interest, e.g. 0–5, 5–15, 15–30, 30–60, 60–100, and
100–200 cm, the depth intervals used in the GlobalSoilMap project
(Arrouays et al., 2014). Then in the third step these average concentra-
tions are mapped one-by-one. For instance, to map the average concen-
tration in the first depth interval 0–5 cm only the ‘observed’ average
concentrations of this depth interval are used; the ‘observed’ average
concentrations of other depth intervals are not exploited. Although
the final picture of SOC concentration has three dimensions, this picture
is constructed with two-dimensional (2-D) models. A drawback of this
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2-D modeling approach per depth interval is that predictions can be
suboptimal in situations where SOC at a specific depth is clearly corre-
latedwith SOC at another location and depth. Also, it can result in unre-
alistic predicted SOC profiles (vertical distributions).

An alternative for the approach with multiple 2-D models is a 3-D
approach, in which the variation in three dimensions is described by a
single model. In this paper we will explore the potentials of 3-D
geostatistical modeling of SOC in a case study in the Qilian Mountains
in China. Lateral variation in the mean of SOC is modeled as a linear
combination of environmental covariates such as terrain attributes
and climate variables. Vertical variation is modeled by including depth
as a predictor, either as a categorical or as a continuous predictor. To
anticipate possible changes of the effects of the environmental covari-
ates with depth, interactions between the environmental covariates
on the one side and depth on the other side are included in the model.

In 3-Dmodelingmuch effort is made on 3-Dmodeling of the covari-
ance of the residuals. Accurate modeling of the residual covariance is
important to obtain reliable estimates of the variance of the prediction
errors (kriging variance). To model the covariance of the residuals we
account both for geometric anisotropy (a unit of distance in vertical di-
rection is not comparable with such unit in lateral direction in terms of
covariance) and zonal anisotropy (variances in vertical and lateral di-
rection can be different). Very recently Li et al. (2016) compared various
covariance functions commonly used in space–timegeostatistics for 3-D
modeling of soil salinity. We adopted a sum-metric covariance model
(Heuvelink and Griffith, 2010). Besides, we account for a non-
stationary residual variance in vertical direction, using the approach of
Marchant et al., (2009). The residual variance is modeled as a stepwise
or linear function of depth.

The following research questions were formulated:

• Do the effects of the environmental covariates changewith depth, and
are these changes comparable in the 2-D and 3-D models?

• Which 3-D model gives the most accurate predictions, the one with
depth as a categorical predictor or the one with depth as continuous
predictor?

• Can the quality of the kriging variances be improved by accounting for
a non-stationary residual variance with depth?

• How different are the maps as obtained with the 2-D models and the
3-D model?

• Are predictions as obtained with the 3-D model more accurate than
those with the 2-D model?

2. Study area and data

The study area is located in the QilianMountains, China (Fig. 1). The
size of the study area is 30,193 km2. In this area 106 locations were
selected for soil sampling. The locations were selected by purposive
sampling, using the method of Zhu et al. (2008). In this method repre-
sentative soil sites are selected from soil-scape units constructed by
fuzzy c-means classification of pixels on the basis of the soil forming
factors.

At the sampling location major soil horizons were sampled, so sam-
pling was not at fixed depth intervals. From each major soil horizon a
bulked soil sample was collected, so the reported concentrations were
average concentrations of soil horizons. The soil samples were dried,
sieved at 2 mm and the soil organic carbon concentration was analyzed
using the Walkley–Black procedure.

To obtain the SOC at fixed depth intervals a spline was fitted using
Spline Tool Version 2.0 (ASRIS, 2011). This resulted into mean SOC con-
centrations for a series of fixed intervals, 0–5, 5–15, 5–30, 30–60, and
60–100. In this study thesemeanswere used as errorlessmeasurements
of SOC. Summary statistics of the SOC concentrations for the five depth
intervals are presented in Table 1. The mean concentration decreased
with depth from 4.7 mass % to 1.6; the standard deviation decreased
with depth, but the coefficient of variation increased with depth. The
total number of measurements in the first two depth intervals was
106; in the third, fourth and fifth depth interval 1, 6 and 31 less mea-
surements were available, due to a soil thickness b100 cm. Fig. 2
shows the histograms of the natural log-transformed SOC concentra-
tions per depth interval. Broadly speaking, these histogramswere nicely
symmetric. The log-transformed SOC concentrations in the five depth
intervals were strongly correlated, see Table 2. The correlation coeffi-
cient decreased with the distance between the depth intervals.

3. Modeling

For modeling various maps with covariates were available: eleva-
tion, aspect, mean annual precipitation (MAP), mean annual tempera-
ture (MAT) and normalized difference vegetation index (NDVI). In
modeling, these quantitative covariates were all scaled, so that their
means were 0 and the standard deviations were 1. This improves the
interpretability of the estimated regression coefficients, but does not
have an effect on the coefficient of determination (R squared) and the

Fig. 1. The study area and the sampling locations.
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