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A comparison study was carried out with the purpose of verifying when the adaptive neuro-fuzzy inference
system (ANFIS), artificial neural network (ANN), generalized linear model (GLM), and multiple linear regres-
sion (MLR) models are appropriate for prediction of soil wet aggregate stability (as quantified by the mean
weight diameter, MWD) in a highly mountainous watershed (Bazoft watershed, southwestern Iran). Three
different sets of easily available properties were used as inputs. The first set (denoted as SP) consisted of
soil properties including clay content, calcium carbonate equivalent, and soil organic matter content. The sec-
ond set (denoted as TVA) included topographic attributes (slope and aspect) and the normalized difference
vegetation index (NDVI). The third set (denoted as STV) was a combination of soil properties, slope, and
NDVI. The ANN and ANFIS models predicted MWD more accurately than the GLM and MLR models. Estima-
tion of MWD using TVA data set resulted in the lowest model efficiency values. The observed model efficiency
values for the developed MLR, GLM, ANN, and ANFIS models using the SP data set were 60.76, 62.98, 77.68
and 77.15, respectively. Adding slope and NDVI to soil data (i.e. STV data set) improved the predictions of
all four methods. The obtained correlation coefficient values between the predicted and measured MWD
for the developed MLR, GLM, ANN, and ANFIS models using STV data set were 0.24, 0.35, 0.84 and 0.73, re-
spectively. In conclusion, the ANN and ANFIS models showed greater potential in predicting soil aggregate
stability from soil and site characteristics, whereas linear regression methods did not perform well.

1. Introduction

Soil aggregate stability is a key factor of soil resistivity tomechanical
stresses, including the impacts of rainfall and surface runoff, and thus to
water erosion (Canasveras et al., 2010). When soil aggregates break
down, finer particles are produced, which are easily carried away by
wind and water flow and which upon re-sedimentation tend to clog
soil pores, leading to the formation of soil crusts (Kirkby and Morgan,
1980; Renard et al., 1997; Yan et al., 2008). Reducing infiltration, this
sealing effect enhances surface runoff and thus promotes further
water erosion. Hence, aggregate stability is an important factor in soil
erosion.

Various indicators have been proposed to characterize and quantify
soil aggregate stability, for example percentage of water-stable aggre-
gates (WSA), mean weight diameter (MWD) and geometric mean

diameter (GMD) of aggregates, and water-dispersible clay (WDC) con-
tent (Calero et al., 2008; Le Bissonnais, 1996). Unfortunately, the exper-
imental methods available to determine these indicators are laborious,
time-consuming and difficult to standardize (Canasveras et al., 2010).
Therefore, it would be advantageous if aggregate stability could be pre-
dicted indirectly from more easily available data.

General soil propertiesmost closely correlatedwith soil aggregate sta-
bility are the contents of clay, calcium carbonate, and organic matter
(Canasveras et al., 2010). Clay particles are considered as cementing
agents for aggregationbecause of their high specific surface area, high cat-
ion exchange capacity (CEC), and consequently, high physical and chem-
ical activity. Soil organicmatter content can affect soil structure as well as
soil aggregate stability in different ways: the transient aggregating effect
of polysaccharides on micro-aggregates, increased aggregate coherence
against slaking due to hydrophobic materials, the temporarily stabilizing
effect of roots and hyphae onmacro-aggregates, and the persistent effect
of polymers and aromatic compounds on micro-aggregates. Calcium car-
bonate contents also influence soil aggregation through their cementing
effects and preventing aggregate dispersion (Amezketa, 1999).

Indirectly, also topography and vegetation characteristics affect
aggregate stability, in particular through their influence on the dy-
namics of soil structure and soil properties such as clay mineralogy,
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SOM, carbonate concentration, texture, soil water content, and plant
development (Canton et al., 2009). Furthermore, slope and aspect
may influence the rate of weathering and erodibility of soils and
thus soil aggregate stability (Bronick and Lal, 2005).

Functions translating suchdata into predictions of soil aggregate sta-
bility can be derived by a variety of methods. In contrast to widespread
applications of conventional regressionmodels to predict soil aggregate
stability indirectly from other data; artificial intelligence systems such
as artificial neural networks (ANNs) and adaptive neuro-fuzzy infer-
ence system (ANFIS) have not been exploited for this purpose, although
they have shown much potential in similar applications (Azamathulla
et al., 2009; Bocco et al., 2010; Gago et al., 2010; Huading et al., 2007;
Huang et al., 2010; Kisi et al., 2009; Uno et al., 2005).

ANNs are computing systemsmade up of a number of simple, highly
interconnected processing elements, also called neurons. Generally, an
ANN is made of an input layer, one or several hidden layers (HLs), and
an output layer of neurons (Tracey et al., 2011). The input layer neurons
receive the input information from the outside environment and trans-
mit it to hidden layer. Each neuron of a subsequent layer first computes
a linear combination of the outputs from all neurons of the previous
layer and then adds a bias to it. Furthermore, each neuron of a HL ap-
plies a specific nonlinear function, called activation function, to this lin-
ear combination plus bias. The coefficients of the linear combinations
and the biases are called weights (Bocco et al., 2010; Saridemir, 2009;
Sobhani et al., 2010; Turan et al., 2011).

ANFIS is a scheme that uses the learning capability of ANNs to derive
fuzzy IF–THEN rules with appropriate fuzzy set membership functions
(Jang and Sun, 1995; Tay and Zhang, 1999). The main strength of
ANFIS in comparison with ANNs is that it generates linguistically inter-
pretable IF–THEN rules (Sobhani et al., 2010). ANFISmodels capture the
relationship between input and output data by establishing fuzzy lan-
guage rules, while ANNs do so in form of trained connection weights.
Furthermore, it is reported that constructing an ANFIS model is less
time-consuming than an ANNmodel (Azamathulla et al., 2009).

The objectives of this study were to: i) compare the capabilities of
ANFIS, ANN, generalized linear model (GLM), and multiple linear re-
gression (MLR) to derive pedotransfer functions (PTFs) between soil ag-
gregate stability and various sets of input variables, and ii) use the PTFs
for prediction of aggregate stability using another set of soil samples
collected from the same area. For this purpose, three different sets of
easily available data including soil properties alone, topographic attri-
butes and vegetation index, and a combination of soil properties and to-
pographic and vegetation attributes were used as inputs. The current
comparison study in using different soft computing techniques and
also different data sets for MWD estimation can be a valuable source
of information for othermodelers. Discussions of advantages and disad-
vantages are also given in different point of view for all the methods.

2. Materials and methods

2.1. Study area description

The study areawas part of the Bazoftwatershed (31° 37′ to 32° 39′N
and 49° 34′ to 50° 32′ E), which is located in the northern part of the
Karun river basin in central Iran. The major river in the watershed is
the Ab-Bazoft, which joins the Karun River at the outlet of the water-
shed. The elevation ranges from 880 m a.s.l. in the south of the water-
shed to 4300 m a.s.l. on the Zardkuh Mountain in the north. The
long-term average rainfall of the region varies between 500 and
1400 mm per year, and the average temperature varies between 8
and 20 °C. Thewatershed is highlymountainouswhere themost slopes
are between 40 and 70%, covering about 46% of the watershed. The
dominant slope shape is convex. Approximately 56% of the watershed
area is covered by pastures, the rest by forests and bare lands. Quercus
brantii is the dominating forest tree species, and Astragalus sp. is the
most abundant pasture plant.

Old terrace deposits (Qt1) are dominant geological unit having
moderate susceptibility toweathering and erosionwith somemarls en-
richment with gypsiferous and sandstone (mp1) (Iranian Geological
Organization, 2006). Majority of the soils include Calcic Argixerolls,
Typic Calcixerepts, Typic Xerorthents, Typic Cryorthents, and Typic
Haploxerolls in the watershed (Soil Survey Staff, 2006) which are dom-
inated by calcareous materials. Soils are less than 5 cm deep on steep
slopes andmore than 150 cmdeep in the valley bottoms. Themain tex-
tural classes are silt loam, loam, silty clay loam, clay loam, and silty clay.
The dominant physiographic units are mountains, hills, plateaus and
upper traces, alluvial plains, and gravelly colluvial fans.

2.2. Soil sampling and measurements

A stratified random samplingwas designed using digital geology, to-
pography, and land use maps in the environment of ILWIS 3.4 software
(ITC, University of Twente, Netherlands) for proper selection of soil
sampling locations in all of the land uses. Thus, land use type was indi-
rectly taken into account in the soil sampling. In other words, the land
use directly or indirectly affects the soil properties (like texture, calcium
carbonate, and organic matter) as well as vegetation cover (as quanti-
fied by NDVI) which were used as predictors in the PTFs. A total of
160 soil samples were collected from the top 5 cm of soil surface from
all major land unit tracts. The positions of the sampling points were
identified in the field using GPS (model: 76CSx).

The soil samples were air-dried and ground to pass a 2-mm sieve.
Soil organic matter (SOM) content was determined by the Walkley–
Black method with dichromate extraction and titrimetric quantization
(Nelson and Sommers, 1986). Clay content (b2 μm) was measured by
means of sieving and sedimentation using the procedure described by
Gee and Bauder (1986), and calcium carbonate equivalent (CCE) was
determined by the back-titration method (Nelson, 1982).

The soil samples for aggregate stability assessment were taken from
the same locations and brought to the laboratory in such a way that
minimum structural deformation and/or destruction occurred. Follow-
ing van Bavel (1950) method, as modified by Kemper and Rosenau
(1986), was used to parameterize the mean weight diameter (MWD)
of wet-sieved aggregates. Briefly, 50 g of the b4.75 mm aggregates
were placed on the topmost of a stack of sieves with descending mesh
size (2, 1, 0.5, and 0.25 mm) from top to bottom. The samples were
first immersed in distilled water and then sieved by moving the sieve
set vertically. The soil retained by each sieve was dried at 105 °C for
24 h, weighed and corrected for sand/gravel particles to obtain the pro-
portion of water-stable aggregates. TheMWD(mm) ofwater-stable ag-
gregates was calculated using the following equation:

MWD ¼
Xn
i¼1

wiX i ð1Þ

where Xi is the arithmetic mean diameter of each size fraction (mm)
and wi the proportion of the total water-stable aggregates in the corre-
sponding size fraction after deducting the weight of sand/gravel parti-
cles (upon dispersion and passing through the same sieve) as
indicated above.

2.3. Topographic and vegetation attributes

The topographic attributes, including slope and aspect, were deter-
mined using a 20 m by 20 m digital elevation model (DEM). The slope
of each cell represents the maximum rate of elevation change between
the cell and its neighbor cells. The aspect represents the direction of
slope, i.e. of themaximum rate of elevation change in down-slopedirec-
tion. The normalized difference vegetation index (NDVI) was used to
quantify the vegetation cover. It was derived from an IRS-1D satellite
photo taken in April 2008 with a spatial resolution of 24 m by 24 m
(Indian Space Applications Centre, 2002).
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