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The wavelet transform and the linear mixed model with spectral tempering are two methods which have been
used to analyse soil data without assumptions of stationarity in the variance. In this paper both methods are
compared on a single data set on soil pH where marked changes in parent material are expected to result in
non-stationary variability. The two methods both identified the dominant feature of the data, a reduction in
the variance of pHover Chalk parentmaterial, and also identified less pronounced effects of other parentmaterial
contrasts. However, there were differences between the results which can be attributed to (i) the wavelet
transform's analysis on discrete scales, for which local features are resolved with scale-dependent resolution;
(ii) differences between the partition of variation into, respectively, smooth or detail components of the wavelet
analysis and fixed or random effects of the linear mixed model; (iii) the fact that the identification of changes in
the variance is done sequentially for the wavelet transform and simultaneously in the linear mixed model.
© 2015 British Geological Survey, NERC. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The properties of soil depend onmany factors, which vary at a range
of spatial scales. As a result soil properties may show substantial spatial
variability (Beckett andWebster, 1971), which requires statistical treat-
ment. One statisticalmodel of soil variationwhich has beenwidely used
is the linear mixed model (LMM) (Lark et al., 2006) which is a general-
ization of the geostatistical model of regionalized random variables
(Webster and Oliver, 2007). In the LMM we treat the variation of a
soil property, z, in terms of fixed effects (categorical or continuous
covariates), which represent factors that we can understand and mea-
sure. The LMM represents the remaining variation with random effects.
There are two sets of random effects in a LMM, thosewhich are spatially
correlated because they are caused by factors which operate at spatial
scales which can be resolved by the sampling used to obtain our data,
and an uncorrelated white-noise component (called the nugget varia-
tion in geostatistics). The LMM is written

z ¼ X τ þ uþ e; ð1Þ

where z is an n-vector containingn observations of variable z,X is a n×P
matrix with n values of each of P fixed effects, τ is a vector of fixed ef-
fects coefficients, u is a vector of correlated random variables and e is
a vector of independent and identically distributed (iid) random

variables, the nugget component. In the LMM we treat the random ef-
fects asmultivariate normal (after appropriate transformation, if neces-
sary) and of mean zero, which means they are characterized by their
n×n covariancematrix. In the case of the iid randomeffect, e, the covari-
ance matrix is given by σe

2In where σe
2 is the variance and In is an n×n

identity matrix. In the case of u the covariance matrix, C, has a more
complex structure reflecting the spatial dependence between
observations.

Parameters of the LMMmust be estimated from data. This provides
something of a challenge for the random effects because, treating them
as a realization of a multivariate gaussian process means that we have
just one realization from which to estimate the covariance parameters.
This is solved by stationarity assumptions. In the LMM a common
assumption is second order stationarity, whereby the covariance of u
at locations si and sj is a function only of the separation in space between
them: si−sj. In this studywe simplify themodel by considering only the
distance between the locations, h=|si−sj |, but directional depen-
dence can be modelled too. One can therefore express C as the prod-
uct of a correlation matrix, the entries of which depend only on the
distances between the corresponding observations, and a constant
variance, σu

2. The entries in the correlation matrix can be modelled
most generally with a Matérn correlation function (Diggle and
Ribeiro, 2007).

ρ hjν;ϕð Þ ¼ h=ϕð ÞνKν h=ϕð Þ
2ν−1Γ νð Þ

ð2Þ
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where Kν(⋅) denotes the modified Bessel function of the second kind of
order ν, Γ(⋅) is the gamma function, ϕ is a distance parameter, and ν is a
parameter which determines the smoothness of the spatial process. If
ν=0.5 then theMatèrn function is equivalent to thewidely-used expo-
nential correlation, larger ν give smoother variation and smaller ν
rougher variation. The random effects of the LMM are therefore fully
characterized by the set of parameters θ={ϕ,ν,σu

2,σe
2}. Estimates of

these parameters are best obtained by residual maximum likelihood
(REML) as described by Lark et al. (2006).

Under the model outlined above the covariance of the random
effects at any two locations depends only on the distance in space
between them. This is a necessary assumption to make the model esti-
mable, but it has a cost for pedological plausibility. Consider a transect
from the levées of a small river, across braided sediment deposits onto
gentle slopes covered with soliflucted material and onto local hilltops
with loess over the underlying sandstone. If we examine the clay con-
tent of the soil on this transect we will observe trends in the mean,
which may be accounted for with appropriate fixed effects in the
LMM. However, the LMM also requires the assumption that the varia-
tion about this mean is homogeneous across the transect. This seems
implausible, given the different processes (alluvial deposition, solifluc-
tion, aeolian deposition) causing textural variation, and the different
scales at which they operate. The implausibility of the stationarity
assumption may undermine the prediction error variances calculated
for interpolated values of the clay content (Lark, 2009), more generally
the parameters of the random effects do not represent soil variability
anywhere on the transect.

The stationarity assumption is one reasonwhy the LMM, as common-
ly implemented, may often give limited insight into soil variation. This is
one reasonwhy soil scientists considered an alternative analysis to exam-
ine scale-dependent variation in soil. This is the wavelet transform. The
discrete wavelet transform (DWT) is discussed in more detail elsewhere
(e.g. Lark and Webster, 1999) and in the theory section below. In short
the DWT represents data by a set of coefficients that represent local var-
iability at different spatial scales (discrete intervals of spatial frequency).
In the context of the example transect above,wavelet coefficients at some
scale may differ in magnitude from one part of the landscape to another,
representing changes in the variability of the property of interest.

Recently, attention has been directed to the extension of the LMM
to cases where the random effects have a non-stationary covariance.
Of particular interest here is the development by Haskard and Lark
(2009) of the spectral tempering method proposed by Pintore and
Holmes (2004, 2005). This method allows one to model changes in
the variance and autocorrelation of a variable as a function of location
in space or some other covariate. This is done by considering the empir-
ical spectrum of the data of interest, and modifying it locally to adjust
the distribution of variance between spatial frequencies, as well as the
absolute variance.

The LMM with spectral tempering and the DWT are different but
complementary ways to represent spatial variation without assuming
homogeneity of the variability. However, the two analyses have yet to
be compared on a common data set. Such a comparison would be of in-
terest. First, variations in the tempering parameter of the LMM with
spectral tempering and variations in the relative magnitude of wavelet
coefficients for different spatial scales must both reflect the particular
spatial heterogeneity of variation of some soil property, and a direct
comparison should be instructive about the methods and the insight
that they can give into soil variation. Second, if the spectral tempering
random effects model in the LMM can, at least in some circumstances,
provide information on changes in soil variation comparable with
those from theDWT then this could beuseful for the interpretative anal-
ysis of irregularly sampled data on the soil, where the scope for wavelet
analysis is limited (Milne and Lark, 2009).

In this paper I report the analysis of measurements of soil pH on a
transect using both the LMM with spectral tempering and the DWT.
The data set is selected as an example where distinct pedogenetic

domains, with contrasting parent material, give rise to heterogeneous
spatial variability. The spectral tempering model and the DWT-based
analysis are compared.

2. Theory

2.1. Linear mixed model with spectral tempering

In the introduction I reviewed the LMM as commonly applied to
soil variables. The non-stationary form of this model with spectral
tempering starts from a stationary covariancematrix, C, for the spatially
correlated random term in the model, the random variable U. One may
compute the n eigenvectors of C, v1,v2 ,… ,vn and corresponding eigen-
values, λ1 ,λ2 ,… ,λn, as in a principal components analysis. This pro-
vides the basis for what is called the spectral decomposition of the
covariance matrix,

C ¼ ∑n
k¼1vkλkvTk

¼ VDVT;
ð3Þ

where the superscript ‘T’ denotes the transpose of a matrix or vector,
the matrix V is n×n with the eigenvectors of C in its columns, and D is
a matrix with zeros on all but the elements of the main diagonal,
which contains the corresponding eigenvalues, ordered from the largest
to the smallest.

The early and later eigenvalues correspond to low spatial fre-
quencies (long-range variation) and to high frequencies (short-range
variation) respectively (Haskard and Lark, 2009). The eigenvalues
λk ,k=1,2 ,… ,n, therefore constitute an empirical spectrum which
describes how the variance of U is partitioned between the spatial
frequencies. The empirical spectrum is not obtained directly from data
but from a stationary covariance function, and is therefore itself station-
ary. I refer to this as the pre-tempering spectrum. Tempering is a
method to adjust the spectrum locally; for example by a relative
increase in the early eigenvalues (low spatial frequencies) in these
areas where the variable appears to be smoother than it is elsewhere.
Pintore and Holmes (2004) proposed that this is achieved by raising
the terms of the pre-tempering spectrum to some positive power η.
Where ηN1 the low-frequency terms in the spectrum are increased rel-
ative to the others, while setting a local value of ηb1 has the opposite
effect, which enhances the short-range variation. Of course, if η=1
the spectrum is unchanged. The spectrum can be adapted locally by
allowing η to vary spatially. This is possible if we can express η as a func-
tion of location in space η(s). The joint value of η for any two locations is
obtained as

η si; s j
� � ¼ 0:5η sið Þ þ 0:5η s j

� �
: ð4Þ

A modified covariance matrix of U, which is in general non-
stationary, CNS, can then be obtained from the spectral decomposition
of the pre-tempering covariance matrix. The (i, j)th element of this
matrix is

CNS
ij ¼ ∑n

k¼1; vk½ �ληij
k vk½ � j ð5Þ

where [vk]i denotes the ith element of vk, which corresponds to the ith
location si and the term ηij=η(si,sj) is obtained from Eq. (4). Haskard
and Lark (2009) showed that CNS is positive definite for positive values
of η and positive definite C. Given this, it is possible for some data set
and a set of fixed effects, to compute the residual log-likelihood for
some set of parameters that specify CNS, and so, by an appropriate nu-
merical optimization, tofinda set of parameter estimates thatmaximize
this (or, equivalently, that minimize the negative residual log-
likelihood).
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