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Diffuse reflectance spectroscopy (DRS) operating in 350–2500 nmwavelength range is fast emerging as a rapid and
non-invasive technique for analyzingmultiple soil attributes. Because the spectral reflectance values in this range of
wavelengths are highly co-linear, it is important to select relevant spectral information from the reflectance spectra
to build a robust spectral algorithm. The objective of this study is to examine the utility of different variable indica-
tors such as partial least squares regression (PLSR) coefficients (β), variable influence onprojection, squared residual
(SqRes), correlation coefficient (r), biweightmidcorrelation (bicor),mutual information based adjacency value (AMI),
signal-to-noise ratio (StN), covariance procedures (CovProc) and their combinations in conjunctionwith an ordered
predictor selection (OPS) approach for selecting optimum number of spectral variables (NSV)which could improve
DRSmodel performance. The approachwas testedwith the PLSRmodels of pH, organic carbon, extractable iron (Fe),
sand and clay contents and geometric mean diameter in Vertisols and Alfisols. The prediction accuracy of best
models selected via OPS approach was found to be superior to full-spectrum (NSV = 2048) model for all the soil
attributes. The percent decrease in RMSE value was found to be highest for Fe (14%, NSV= 79) in Alfisols followed
by pH (9%, NSV= 660) in Vertisols while it varied between 3 and 8% for other soil attributes. Although the results
were not conclusive in favor of one specific variable indicator, the CovProc and bicorwere found to be more appro-
priate for accurate andmoderateDRSmodels in this study, respectively. The overall results of this study advocate the
use of OPS approach with variable indicators and their combinations as a promising strategy to develop simple and
effective DRS models for soils.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last few decades, diffuse reflectance spectroscopy (DRS)
has been recognized as a rapid and non-invasive technique for the
measurement ofmultiple soil attributes. TheDRS approach is alsowidely
adapted as a digital soil mapping tool across the globe (Ben-Dor and
Banin, 1995; Soriano-Disla et al., 2014). Typically, an efficient multivari-
ate regression model is developed between targeted soil attributes and
spectral reflectance values in visible to near- and shortwave-infrared
(VisNIR) range of wavelengths (350–2500 nm) in the DRS approach.
Both linear and non-linear chemometric and data mining algorithms
such as principal components regression, partial least squares regression
(PLSR), support vector regression (Thissen et al., 2004), regression trees
(Brown et al., 2006), multivariate adaptive regression splines (Shepherd
and Walsh, 2002), committee trees (Vasques et al., 2009b), artificial
neural networks (Daniel et al., 2003; Goldshleger et al., 2012) have been
examined in soil DRS studies. Among these, the PLSR approach seems
most frequently used because of its ability to address multicollinearity

of spectral variables, interpretability and computational performance
(Viscarra Rossel et al., 2006; Stenberg et al., 2010). Performance of these
models relies on their capability to extract important spectral characteris-
tics or features (e.g., electronic transitions, overtones and combinations of
fundamental vibrations in the mid-infrared frequencies) relevant to the
soil attribute of interest (Viscarra Rossel et al., 2006; Viscarra Rossel and
Lark, 2009).

A general practice in the DRS approach is the use of either entire
(full-spectrum) or selected reflectance values as spectral variables for
building a DRSmodel. The VisNIR response is generallyweak and consists
of complex absorption features (Stenberg et al., 2010). Hence, the
selection of either a full or a part of the spectrum without a proper
guideline often leads to have redundant or irrelevant information
in the DRSmodel affecting its performance. The selection of appropriate
and optimum number of spectral variables is expected to reducemodel
complexity and improve robustness (Xiaobo et al., 2010) and prediction
accuracy of calibration models (Jouan-Rimbaud et al., 1995; Nadler and
Coifman, 2005). Fernández Pierna et al. (2009) suggested that a robust
variable selection method should yield a small set of variables capable
of providing better, or at least, equivalent model performance to those
obtained by the original set of variables. Hence, variable selection
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should be included as a critical step in DRS data analysis routine to
accomplish the aforesaid advantages. A few sophisticated variable
selection approaches (Xiaobo et al., 2010) have already been examined
in the spectroscopic studies including successive projections algorithm
(Araújo et al., 2001), uninformative variable elimination (Centner
et al., 1996), simulated annealing (Kirkpatrick et al., 1983), genetic
algorithms (Leardi et al., 1992), moving window partial least square
(Chen et al., 2011), interval partial least squares (Norgaard et al., 2000),
backward variable selection for PLSR (Fernández Pierna et al., 2009),
wavelet transformation (Ge and Thomasson, 2006) among others.
Recently, Li et al. (2009) developed a competitive adaptive reweighted
sampling (CARS) as a strategy for spectral variable selection using
regression coefficient (β) of PLSR model. Vohland et al. (2014) success-
fully implemented the CARS approach in the soil dataset, and concluded
that the approach is simple, accurate, and involves reasonable and
parsimonious variable selection. However, no unique solution exists
for this approach, mainly because of the Monte Carlo strategy and
random numbers used in CARS. The issue may be resolved with the
use of ‘variable indicators’ or ‘informative vectors’ in conjunction with
an ordered predictor selection (OPS) approach, as suggested by Teófilo
et al. (2009). In addition, the OPS approach has the following advantages:
simple, flexible, effective in parsimonious selection and interpretability
of spectral variables. The OPS approach has not been tested with soil
datasets for a multitude of variable indicators.

In general, the variable indicators are descriptors of the relationships
between predictor (spectral variables) and response (soil attribute) vari-
ables. The information on the predictors–response relationship conveyed
by each variable indicator differs by the underlying mathematical princi-
ple or operation that guides their calculation. Thus, variable indicators
may be considered appropriate for optimum spectral variable selection.
In spectroscopy, several variable indicators exist (Teófilo et al.,
2009), which may be broadly classified into PLSR-dependent and
PLSR-independent categories. The β, variable influence on projection
(VIP), squared residual vector (SqRes) and net analyte signal (NAS)
are PLSR-dependent variable indicators, while correlation vector
(r), signal-to-noise vector (StN) and covariance procedures vector
(CovProc) are independent of PLSRmodel in their calculation. The co-
efficient vector β is a linear measure that represents the expected
change in the response per unit change in the predictor variable
(Mosteller and Tukey, 1977), whereas VIP (Wold et al., 1993) represents
the importance of a predictor variable on the model based on the
weighted PLSR coefficients. Variable indicator SqRes (Teófilo et al.,
2009) represents the difference between the original and reconstructed
spectra, which has relevant information on the important spectral
variables. Variable indicator NAS is defined as the part of the spectrum
unique to the attribute of interest (Ferré and Faber, 2003), and is similar
to β for inverse calibration algorithms (Teófilo et al., 2009). The indica-
tor r represents the Pearson correlation coefficients. The StN (Brown,
1992) denotes signal-to-noise statistics for each variable generated by
least squares fit between predictor variables to the response variable.
The indicator CovProc (Reinikainen and Hoskuldsson, 2003) represents
the diagonal values of covariance matrix as a measure of strength
between predictors and response variable. New vectors could be gener-
ated by combining different variable indicators following normalization
(Teófilo et al., 2009).

To the best of our knowledge, the utility of variable indicators in
spectral variables selection has been limited to β (Vohland et al.,
2014), while VIP and r have been mainly used for feature visualization
in soil DRS studies. Vohland et al. (2014) have cross-validated the use
of β and emphasized the need for an independent validation for its
use in optimum variable selection. In addition, the elemental values of
β are highly dependent on the number of latent variables used in the
model (Teófilo et al., 2009), and hence assumed to be less stable
compared to the PLSR-independent counter parts. The utility of other
PLSR-dependent, independent and their combinations in spectral
variables selection is rarely examined, and thus warrants further

investigation. Thus, the objectives of this study are a) to evaluate
the performance of OPS approach in the optimum spectral variables
selection using different variable indicators, and b) to identify the
best variable indicator for optimum spectral variable selection for
each soil attribute.

2. Materials and methods

2.1. Soil samples and their analyses

Soil samples examined in this study were those used by Sarathjith
et al. (2014a, 2014b). Briefly, the surface (0–10 cm) soil samples were
collected from 25 contiguous villages from the northern Karnataka
(sampled area: 9839 km2) and 25 villages from southern Karnataka
(sampled area: 2602 km2). In general, soils in northern Karnataka are
classified as Vertisols and those in the southern Karnataka as Alfisols.
Vertisols in Karnataka generally occur as Vertisols with intergrades
and a mixture of Vertic Inceptisols. These soil groups are distinctly
different with regard to pH, iron oxides, clay mineral, cation exchange
capacity, silica-sesquioxide ratio and parent material (Lotse et al.,
1972). The chemical, physical and spectral attributes of soils were
estimated using that fraction which sifted through 2 mm sieve after
air drying and manual grinding. Soil samples were subjected to the
chemical analyses routine for the determination of pH by potentiometric
means using a 1:2.5 soil/water ratio; organic carbon (OC) by the dichro-
mate oxidationmethod (Walkley and Black, 1934); and extractable iron
(Fe) content using inductively coupled plasma optical emission
spectrometry (ICP-OES, HD Prodigy, Leeman Labs, New Hampshire,
USA). The physical attributes examined in this study include soil particle
size (clay and sand content) measured by pipette method (Gee and
Bauder, 1986) and geometric mean diameter (GMD) by dry sieving of
soil samples in a stack of eight sieves (Sarathjith et al., 2014a). These
soil attributes cover a range of chemical and physical chromophores
frequently estimated in the DRS approach.

A portable spectroradiometer (Field Spec 3 FR, Analytical Spectral
Devices Inc.) equipped with a contact probe of 10 mm spot size was
used to record the proximal spectral reflectance (350–2500 nm) from
a leveled surface (Mouazen et al., 2010) of about 50 g soil sample placed
in an aluminum moisture box (10 cm diameter). Soil reflectance was
measured from each quadrant of the moisture box. White reference
spectrum from a Spectralon (Labsphere) panel (9.2-cm diameter) was
acquired before scanning each soil sample (Sarathjith et al., 2014b).

Table 1
Descriptive statistics of soil attributes.

Soil attribute Calibration Validation

n Mean Range n Mean Range

Vertisols
pH 175 8.57 (5)a 6.63–9.60 58 8.56 (5) 6.65–9.23
OC, % 175 0.39 (37) 0.14–0.93 58 0.39 (36) 0.15–0.76
Fe, mgL−1 175 7.22 (78) 1.70–29.60 59 7.03 (76) 1.70–28.30
Sand, % 178 66.39 (13) 44.51–84.82 60 66.18 (13) 44.71–84.21
Clay, % 176 14.45 (30) 4.47–35.27 59 14.52 (32) 6.43–33.30
GMD 176 0.31 (23) 0.17–0.49 59 0.31 (24) 0.17–0.49

Alfisols
pH 175 6.68 (21) 4.30–9.50 58 6.65 (20) 4.40–8.80
OC, % 174 0.37 (33) 0.11–0.75 58 0.37 (33) 0.12–0.70
Fe, mgL−1 175 14.87 (86) 2.00–104.80 58 14.19 (75) 2.60–40.00
Sand, % 174 78.85 (9) 53.30–91.60 58 78.73 (9) 55.00–90.40
Clay, % 178 12.72 (51) 3.70–34.30 59 12.49 (49) 3.90–28.50
GMD 175 0.21 (25) 0.13–0.45 58 0.21 (24) 0.13–0.37

n: Number of soil samples.
a Values in parentheses are the coefficients of variation (%).
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