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Soil landscapes often exhibit complex spatial patterns,with some aspects of soil variation apparently unrelated to
measurable variations in environmental controls. However, these local, contingent complexities are not truly
random or intrinsically unknowable. The purpose of this work is to develop and apply a method for identifying
or teasing out causes of soil landscape complexity. Soil spatial adjacency graphs (SAG) represent the geography
of soil landscapes as a network that can be analyzed using algebraic graph theory. These SAGs include linear se-
quential subgraphs that represent sequences of soil forming factors. The number and length of these soil factor
sequences (SFS), and their associated spectral radius values, determine whether the SFS are sufficient to explain
the spatial pattern of soil adjacency. SAGs and associated graph theory methods provide useful tools for guiding
pedological investigations and identifying gaps in knowledge. The methods also allow sources of soil landscape
complexity and variability to be determined in a way that can help assess the underlying deterministic sources
of chaos and dynamical instability in pedology. The approach is applied to a soil landscape in central Kentucky,
producing a SAG with 13 nodes (soil types) and 36 links indicating whether the soils occur contiguously. Five
SFS were identified, the sum of whose spectral radius values is 6.35. The spectral radius of the SAG is 6.56, indi-
cating that the SFS can explain most, but not all, of the complexity of the soil relationships. The analysis also
points to potential environmental controls that could potentially enable full explanation.
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1. Introduction

1.1. Soil variability and complexity

Spatial variability of soils and soil properties, and pedodiversity (re-
lated but not identical concepts) has often been found to encompass un-
explained variation. Soil variability has long been attributed to a
systematic, predictable component, and an apparently random noise
component (Burrough, 1983). Some studies have found the apparent
noise in many cases is actually attributable to deterministic complexity
associated with dynamical instability and chaos (e.g. Culling, 1988;
Ibáñez et al., 1990; Phillips, 1993, 2000, 2001b; Ibáñez, 1994; Phillips
et al., 1996; Liebens and Schaetzl, 1997; Webster, 2000; Phillips and
Marion, 2005; Toomanian et al., 2006; Milan et al., 2009; Borujeni
et al., 2010). Several studies of pedodiversity have also found evidence
of soil diversity arising from local, contingent, unobserved factors unre-
lated to measurable variations in soil forming factors such as topogra-
phy, (micro)climate, parent material, vegetation, and geomorphic
history (Phillips, 2001a, 2013b; Phillips and Marion, 2005; Ibáñez
et al., 2009, 2013). Dynamical instabilities can magnify the effects of

small variations in initial conditions or localized disturbances, and com-
plex nonlinear interactions may obscure relationships between soils
and soil-forming factors. Few, if any, would argue that these local, con-
tingent, complexities are truly random or intrinsically unknowable. The
purpose of this work is to develop and apply amethod for identifying or
teasing out pedological causes of complexity in soil geography at the
landscape scale.

The pseudo-random or “noise” component of soil variability can be
considered as contingent, based on the notion that instability, local dis-
turbances, and other deviations from systematic patterns are geograph-
ically and/or historically contingent (Phillips, 2013a, 2013b). This
recognizes (or assumes) that the unexplained variations are controlled
by unobserved local geographical variations in environmental controls
and/or specific local disturbances or events. In previouswork I analyzed
the soil spatial variability at the landscape scale (study sites of 20–70 ha)
to determine the relative importance of variability linked to soil forming
factors (considered as soil factor sequences or SFS) versus that associat-
ed with contingent factors such as local disturbances and dynamically
unstable magnification of minor initial differences (Phillips, 2013a). In
the present study that approach is expanded to determining how
many SFS or factorial relationships are necessary to explain the spatial
pattern of soils. The (implicit or explicit) assumption of most analyses
of soil geography, pedodiversity, and soil spatial variability is that
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even complex, unexplained variations can potentially be explained,
given enough local information. However, it is not practical tomake de-
tailed pedon-by-pedon examinations at a density sufficient to explain
the high degree of soil variability often observed at the landscape
scale. The approach developed here allows the determination of the
minimum number of SFS that must be identified to explain the spatial
pattern of soil adjacency.

Soil forming factors are environmental controls that control or influ-
ence variations in soil properties and soil types. The classic factors are
climate, biota, topography, parent material, and time or surface age. In
addition, there may be other locally or regionally significant factors
such as non-topographically driven (e.g., aeolian, tillage) soil redistribu-
tion, disturbance regimes, land use, etc. A number of specific criteria or
variables are used to represent these factors. Soilmapping, aswell as pe-
dology and soil geography, are based on the concept of sequences of soil
variation based on soil forming factors. For instance, climo- and
lithosequences represent systematic variation of soil properties along
gradients of climate, and lithology or parentmaterial, respectively. Cate-
nas, repeated sequences of soils formed from similar parent material
under similar climatic conditions but whose characteristics differ be-
cause of variations in relief and drainage, are another example. SFS
may represent spatial gradients, such as a climosequence along gradi-
ents of moisture or temperature. Other SFS may be associated with cat-
egorical variations that may or may not occur along spatial gradients –
for instance, a SFS based on coarser to finer textural differentiations.

Note here a key difference between soil forming factors and
distinguishing characteristics used to identify, classify, or map soils.
Distinguishing characteristics are used in taxonomy and soil keys, and
may include soil forming factors, such as parent material or landform
position. However, distinguishing characteristics are often features ac-
quired during pedogenesis are reflect soil forming factors. For example,
diagnostic horizons, chemical properties such as pH or cation exchange
capacity, and horizonation are distinguishing characteristics that reflect,
but are not, soil forming factors. In general, soil forming factors are those
that could be measured or identified independently of soil properties.

1.2. Spatial adjacency graphs

In a spatial adjacency graph (SAG) the graph nodes or vertices are
nominal or categorical spatial entities—in this case soil types, but land-
form types, geological formations, or vegetation communities and
other entities could be similarly treated. Any pair of nodes is connected
(i.e., there exists an edge or link between them) if they are spatially con-
tiguous. Thus, if soil types A and B at least sometimes occur adjacent to
each other, they are connected. If they are never spatially adjacent, there
is no edge connecting A, B. In the SAGs used by Phillips (2013a), for in-
stance, connectivity or spatial adjacency was based on whether soil
types (taxa) occurred within the same mapping unit, or in mapping
units with shared boundaries. Heckmann et al. (2015) consider SAGs
to be intermediate between spatially explicit graphs, where nodes rep-
resent specific locations or areas, and structural graphs, where nodes
represent system components (for instance, most state-and-transition
models can be represented as structural graphs).

Themethod in this paper is based on algebraic graph theory, which fo-
cuses on analysis of graph adjacency matrices. An adjacency matrix for a
network with N nodes is an N x N matrix with cell entries of zero if the
row and column nodes are unconnected, and nonzero otherwise. For the
case of a SAG, cell values are 1 if the row and column nodes are spatially
contiguous (e.g., share boundaries on a map or occur within the same
mapping unit), and 0 otherwise (by convention, diagonal entries are zero).

Eigenvalues of the adjacency matrix may be simple or complex. The
largest eigenvalue (λ1) (or its real part if complex) of the adjacency ma-
trix is the graph spectral radius. The spectral radius has a maximum
value of N-1 for a fully connected SAG (e.g., any soil type can occur adja-
cent to any other), and a minimum for linear sequential or chain-type
graphs. Spectral radius is a key indicator of many network properties. λ1

is sensitive to the number of cycles in the graph, defined as sequences
of edges that begin and end at the same node. Spectral radius is also in-
versely related to critical coupling strength, a threshold at which a
graph transitions from incoherent to coherent behavior (Restrepo et al.,
2006, 2007). Coherence is not directly relevant to SAGs, but this property
reflects the fact that spectral radius is an indicator of the complexity of the
graph (see, e.g., Fath, 2007; Phillips, 2011a, 2011b).

Denoting the SAG as G, G’ is a subgraph of G (i.e., a graph whose
nodes and edges are subsets of G). Standard principles from algebraic
graph theory show that

λ1 Gð ÞNλ1 G’ð Þ ð1Þ

λ1 Gð Þb∑
n
λ1 G0

k

� � ð2Þ

where there are k = 1, 2, . . . , n subgraphs of G.
Phillips (2013a) used this in the analysis of soil SAGs, based on the

idea that SFS are linear sequential subgraphs of the SAG. The sum of
the spectral radii associatedwith each identified SFS (Λ) thus represents
the total graph complexity that can be explained by these factorial rela-
tionships. If the spectral radius of the SAG is greater than Λ, there exists
unidentified or unexplained complexity. If λ1 b Λ, the SAG is over deter-
mined and graph complexity can be fully explained by identified SFS.
Over determination occurs because SFS may contain redundant infor-
mation (Phillips, 2013a). For instance, a topographic sequencemay rep-
resent variations in elevation, slope, moisture, or insolation.

2. Theory

If the spatial pattern of soil can be wholly explained by soil forming
factors, then spatial adjacency should be entirely determined by SFS.
Note the difference between a spatially explicit approach and the spatial
adjacency analysis. For example, in a spatially explicit assessment of,
e.g., soil variation in relation to slope curvature, an unmeasured depres-
sion or concavity within an otherwise convex slope segiment could re-
sult in an apparently anomalous soil type. However, as long as the
relationship between curvative and soil type is incorporated in an SFS
for the study area, then failure to identify or measure a local variation
in curvature will not affect the graph representation.

As noted above, a SFS can be represented as a linear sequential
subgraph, a type of graph wherem= N – 1 and the nodes are arranged
in a chain. Classical linear vegetation succession models, for example,
have this form, along with most catenary relationships and factor se-
quences in pedology. The maximum largest eigenvalue for a graph
where m = N -1 is

λ1; maxð Þ ¼ 2 N�1ð Þ2=N
h i0:5

ð3Þ

Thus as the size of the graph (length of the sequence N) increases,
the maximum spectral radius increases as the square root of N. Several
different connected graph types have N – 1 edges, including radiation-
type structures (i.e., Phillips, 2011a). However, λ1 for a chain or linear
sequential graph structure is highly constrained such that λ1 = 1 for
N = 2, and for N N 3:

lim λ1 ¼ 2
N→∞ ð4Þ

Therefore, for any SFS subgraph of a SAG

1 ≤ λ1 G’ð Þb2 ð5Þ

Using Φ to denote the minimum number of SFS needed to fully ac-
count for the complexity of a SAG as indicated by its spectral radius,

INT λ1=2þ 1ð Þ ≤ Φ ≤ ΙΝΤ λ1ð Þ þ 1 ð6Þ
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