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Legacy samples are a valuable data source for digital soil mapping. However, these sample sets are often small in
size and ad hoc in spatial distribution. Constrained by the limited representativeness of such a sample set, the ob-
tained soil maps are often incomplete in spatial coverage with “gaps” at the locations which cannot be well rep-
resented by these samples. Themapsmay also contain areas of highprediction uncertainty. In order to extend the
predicted area and reduce prediction uncertainty, additional samples are needed. This paper presents a sampling
design based on prediction uncertainty to select samples which will effectively complement the sparse and ad
hoc samples, and maximize the spatial coverage of prediction and minimize prediction uncertainty. A case
study in China shows that this sampling schemewas effective in achieving these goals. Comparedwith stratified
random sampling scheme, when the number of additional samples is the same, the produced map using uncer-
tainty directed samples has larger predicted area, and the accuracy of the producedmap is higher than that of the
maps using stratified random samples. The finding of this study suggests that prediction uncertainty is a useful
indicator to aid field sample selection and to complement the legacy data. Furthermore, the mapping accuracy
produced using this method can be quantitatively related to the number of additional samples needed which
opens a new horizon for digital soil mapping.

© 2015 Published by Elsevier B.V.
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1. Introduction

Legacy sampleswhichwere accumulated through historical national
soil surveys and/or specific field studies are a valuable data source for
digital soil mapping. However, in most areas especially in developing
countries, the number of legacy samples could be so limited that it
may not be appropriate to apply traditionalmethods (such as regression
or kriging interpolation methods) to map soils using these samples. For
example, the land area of China is about 9.6 × 106 km2, but there are
only 7292 legacy profiles available across the country (about 1 sample
per 1316 km2 in average) in the Soil Attributes Database from the Soil
Series of China (volumes 1–6) and Soil Series of Provinces (total 34
volumes) (Yu et al., 2007; Shi et al., 2007). Some legacy samples were
collected without following any conventional sampling designs (e.g.
stratified random sampling, regular sampling). These samples, which
are limited in number and do not provide a good spatial coverage of
the study area, are referred to as sparse and ad hoc samples in this
paper. Sparse and ad hoc samples are especially common for large

area but cannot be used with the conventional soil mapping methods
(such as regression or kriging) for mapping the spatial distribution of
soil properties. Besides, it is difficult to collect a large set of samples fol-
lowing a well-defined sampling design due to restrictions in sampling
under complex field conditions and limited sampling budget.

However, each of these sparse and ad hoc samples does contain the
local relationship between soil and environmental conditions although
these samples do not represent the entire area very well. To make full
use of legacy samples, Zhu et al. (2015) presented an individual predic-
tive soil mapping (iPSM)method to predict soil properties using sparse
and adhoc samples. Under the assumption that themore similar the en-
vironment conditions between two locations the more similar the soil
property values (Hudson, 1992), they used similarity in environmental
conditions between an unvisited location and a field sample to approx-
imate the similarity between the soil at the unvisited location and that
at the sample. Thus, the soil property value at the unvisited location
can be computed based on the similarities to a set of samples and the
property values at these samples (Zhu, 1997; Qi et al., 2007; Zhu et al.
(2010a)). The method also produces uncertainty associated with each
predication based on the similarities of the unvisited location to a set
of samples. A “NoData” valuewill be assigned to locationswhere uncer-
tainty values exceed a certain threshold (user-specified) under the
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notion that it is not reasonable to predict soil property values for loca-
tions which the current set of samples cannot represent well. Therefore,
it is very possible to end up with an incomplete soil property map with
areas of “NoData” values using thismethod and it is necessary to collect
additional samples to cover these unmapped areas and to reduce the
overall uncertainty of the predicted map.

The question then is how to effectively use the computed uncertain-
ty information in designing a sampling scheme which can integrate
existing samples and provide as few samples as possible but will maxi-
mize the reduction of the unmapped areas andminimize the overall un-
certainty in the predicted map.

Design-based sampling (regular grids, simple random sampling,
etc.) is very difficult to integrate legacy samples, because the legacy
samples are always ad hoc (Brus and de Gruijter, 1997; Walvoort
et al., 2010). For model-based sampling scheme, the semi-variance
functionwhich quantifies the spatial auto-correlation is always estimat-
ed from a large amount of existing samples (Brus et al., 2006; Isaaks and
Srivastava, 1989; Goovaerts, 1999). But, the legacy samples are usually
sparse, which makes the model-based sampling scheme not suitable
for integrating legacy samples.

The conditioned Latin hypercube sampling (cLHS) as proposed by
Minasny andMcBratney (2006) has the advantage that the distribution
of the designed sample locations replicates the distribution of environ-
mental covariates. cLHS is used widely at present (Worsham et al.,
2012; Taghizadeh-Mehrjardi et al., 2014; Reza Pahlavan Rada et al.,
2014; Kidd et al., 2015). But each cLHS sampling scheme is designed in-
dependently, thus cLHS is hardly used for designing additional sample
and it cannot provide the sampling order of the additional samples.

Spatial Simulated Annealing (SSA) method could be used to optimize
placement of the individual observations by meeting some criterion (the
minimal average or maximum Kriging variance), and this optimization
samplingmethod also could include use of previous samples to direct ad-
ditional sampling (van Groenigen et al., 1999; Van Groenigen, 2000; Brus
and Heuvelink, 2007). However, SSA method cannot provide the sam-
pling order of the additional samples also. When the sampling resource
is limited, sampling order is very important information for allowing in-
vestigators to effectively plan sampling resources.

Purposive sampling intends to collect samples which are typical of
soil types or soil mapping units. Purposive samples are usually designed
by local soil experts based on their knowledge during conventional soil
mapping. But this type of purposive sampling highly depends on expe-
rience or personal judgment of soil experts. An integrative hierarchical
stepwise sampling strategy has been proposed to design representative
samples with assistance of environmental covariates through a fuzzy
clustering approach (Yang et al., 2013). Although this method is effec-
tive for predicting soil maps in digital soil mapping for initial sampling,
this method has not been used in additional sampling, and it also does
not have any mechanism to include uncertainty in the design.

This paper presents an effective and stepwise sampling scheme to
identify additional sample locations based on the prediction uncertainty
information quantified by the iPSM method proposed by Zhu et al.
(2015). The method not only effectively extends the mapped area and
reduce overall uncertainty using as few samples as possible, but also in-
tegrate all the legacy soil samples. Section 2 presents the details of this
uncertainty directed and stepwise sampling scheme, which is followed
by a case study illustrating the effectiveness of the proposed method.
Section 4 presents the result and discussion. Conclusions are drawn in
Section 5.

2. Methods

2.1. Basic idea

The basic idea of the uncertainty directed sampling reported in this
paper is to use the uncertainty derived from the method (iPSM) by
Zhu et al. (2015) to identify as few samples as possible to map soil

spatial distribution below a user specified level of prediction uncertain-
ty and to maximize the reduction of the prediction uncertainty.

Zhu et al. (2015) proposed the individual predictive soil mapping
(iPSM) method which can make full use of limited soil sample data for
predictive soil mapping and provide the prediction uncertainty at
every location where a prediction is made. iPSM uses the soil–environ-
ment relationship at each individual soil sample location to predict soil
properties at unvisited locations and estimate prediction uncertainty.
Themore similar the soil environmental conditions between an unvisit-
ed location and the locations of legacy soil samples, the lower the pre-
diction uncertainty on the unvisited location because the legacy data
could represent the unvisited location well. Prediction uncertainty can
be measured before a prediction is made for a given location and a
given set of soil sample locations. Thus, with iPSM a user can specify a
level of prediction uncertainty under which the soil property at an un-
visited location can be predicted. Locations with uncertainty values
higher than the specified level are assigned “No Data” to signify that
the current set of samples is insufficient to make soil property estima-
tion at the given level of acceptability (as specified by the uncertainty
level) (Zhu et al., 2015). These locations form holes or gaps on the out-
put soil property map. Fig. 4 shows themap with unmapped area (gray
area) which cannot be represented by legacy samples well. The uncer-
tainty on the gray area is higher than a specified threshold, and “No
Data”would be assigned to these locationswhenmapping soil property.

To examine the effects of sampling on gap filling and on uncertainty
reduction, the proposed method were divided into two stages. The first
is “Gap filling”, which is to identify as few samples as possible to com-
plete the prediction for areas previously labeled as “No Data”. The sec-
ond is to select samples which can maximize the reduction of overall
prediction uncertainty. To fill the gaps of soil map and at the same
time to minimize the number of samples needed, we adopt the follow-
ing process: 1) in the unmapped region (“No Data” data), the location
which can extend thepredicted areamost is chosen as thefirst addition-
al sample and add this sample into the pool of existing samples; 2) we
update the soil map based on the existing samples (including the
newly selected additional sample); 3) if the resulted soil map still con-
tains “No Data” locations or the “No Data” areas are still too large to be
acceptable, select the location which has most incremental predicted
area as the second additional sample. Repeat this process till the soil
map is complete or the “No Data” areas are below an acceptable level
(user-specified).

To maximize the reduction of the overall prediction uncertainty we
adopt the following process: 1) based on the assumption that the
more similar the environment conditions between two locations the
more similar the soil property values, we select the additional sample
representing the largest area in high uncertainty region and add this
sample into the pool of existing samples; 2) update the prediction
uncertainty map using the existing samples (including the additional
sample just selected). Repeat the above process till the overall
uncertainty is below a certainty threshold or the sampling is beyond
the project budget. These additional samples for reducing the overall
uncertainty are also stepwise because each sample is based on the un-
certainty map generated from the last round.

The above uncertainty directed samplingmethod not only integrates
the legacy samples but also provides as few stepwise samples as needed
to fill themap gaps and reduce the overall prediction uncertainty. In ad-
dition, at the time of selecting a sample location using this design does
not mean actually filed sampling at this location, because the selection
for maximization of area covered or minimization of uncertainty is
based on environmental similarity only. Calculation of environment
similarity does not need the soil property value at the sample. In fact,
the user(s) can wait till the locations of all the additional samples
(based on the budget and or area coverage and or uncertainty reduction
defined by users) are determined through the above process before
starting the field sampling campaign so that samples can be collected
at once in the field.
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