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There is a persistent general concern with carbon sequestration and modeling of soil carbon change affecting
global issues, such as climate change and food security. To address these concerns requires the measurement
of carbon everywhere and routinely, but the rate limiting step is the need to physically fraction the soil carbon
to establish;where it is stored in soil, tomodel the formation of soil aggregates that physically protect soil carbon,
and in-turn to populate soil carbon models. To remove the need for this fractionation pretreatment, commonly
donebywet-sieving, this study scopes thenotionof the efficacy of usingnear- (NIR) andmid- (MIR) infraredderived
spectra taken of bulk soil samples to predict carbon in the separated aggregate fractions containedwithin. Forty five
surface soil sampleswere collected from three bioregions of New SouthWales providing for a range of soil types and
associated soil carbon. The carbon content was measured of the bulk soil samples and their aggregate fractions of
b63 μm, 63–250 μm, and N250 μm subsequently separated by wet-sieving. The bulk soil samples were scanned in
the spectral ranges 800–2500 nm (NIR region) and 2500–25,000 nm (MIR region). The Cubist regression tree
model was used to predict the carbon content in the aggregate fractions scanned from the bulk soil samples. The
cross-validation results reveal that theMIR demonstrated the strongest correlation betweenmeasured and predict-
ed carbon of the aggregate fractions demonstrated byhighR2 (0.63–0.85) and rationof performance to inter-quintile
distance (RPIQ, 0.53–0.93). The wavelengths selected in the Cubist model coincide with wavelengths identified as
characterizing adsorption due to chemistry of soil carbon in some recently published works in this area of research.
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1. Introduction

Soil carbon has been a major focus globally in the last 5 to 10 years
and this is partly driven by its sequestering potential in soil having a
significant and achievable impact on mitigating rises in atmospheric
carbon (Bellon-Maurel and McBratney, 2011; Knox et al., 2015). This
is because SOC is the largest terrestrial store of carbonmaking it the sec-
ond largest to the ocean (Lal, 2009; Stockmann et al., 2013). The singling
out of soil carbon as one of the seven unique functions of soil is in the
further evidence of wide ranging interest of soil carbon (CEC, 2006;
Bouma and Droogers, 2007;McBratney et al., 2014). Also, there remains
an on-going need to integrate knowledge of SOC and SOC models into
existing models, such as those focusing on hydrology and predicting
ecosystem change (Karim Malamoud et al., 2009; Bouma and
McBratney, 2013). Finally, the fact that carbon responds quickly to
changes in the soil makes it a amenable indictor of soil change, and
the fact that the carbon is already recognized by the broader community

means it could be easily understood by policy makers and the general
public (Schmidt et al., 2011; Koch et al., 2014), makes it a amenable
indictor of soil change.

In response to these recent observations there is an urgent need to
be able to routinely, efficiently, and cheaply measure carbon every-
where (Grunwald, 2009) so as to effectively monitor its change. This
not only includes the assessment of total soil carbon but a rapid assess-
ment of soil fractions that are routinely used in soil carbon models.
Equally important is the need to quantify where the carbon is stored
within soil aggregate fractions providing for their integrity and in-turn
it being physically protecting from immediate degradation. Although
there has been progress in expediting the quantification of SOC of
bulk soil using spectroscopic techniques, such as near- (NIR) and mid-
infrared (MIR) spectroscopy, (Janik et al., 2007; Reeves, 2010;
Stenberg et al., 2010; Bellon-Maurel andMcBratney, 2011) the rate lim-
iting step of having to physically fraction the soil carbon (Reeves et al.,
2006; Zimmermann et al., 2007) to address where it is stored and to
populate current carbons models, such as Struc-C and CAST, remains
(Karim Malamoud et al., 2009; Stamati et al., 2013).

The natural variation of soil types and the impact of land-use result
in variation of soil carbon both spatially and temporarily (Knox et al.,
2015). This is because the distribution of carbon is partly determined
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by the potential sources and nature of soil carbon provided by the asso-
ciated above ground biomass and microbial residues (Gregorich et al.,
2006; Clemente et al., 2011). Within soil SOC is distributed throughout
soil aggregate fractions and is implicated in their formation and stabili-
zation. The smallest of these aggregates are composed of organo-
mineral associations, which are in-turn boundwith bacterial and fungal
debris to formmicroaggregates, and the clustering of these into macro-
aggregates (Emerson, 1959; Edwards and Bremner, 1967; Tisdall and
Oades, 1982; Six et al., 2000). Over time the degradation of organic
carbon binding agents in macroaggregates results in the release of the
more stable microaggregates, and these microaggregates have the po-
tential to form the building blocks for the next cycle of macroaggregate
formation (Six et al., 2000). Up to 90% of SOC in surface soils is found to
be located within aggregates (Six et al., 2002) and 20–40% of the SOC is
intra-microaggregates (Jastrow et al., 1996; Carter, 1996). To obtain
these fractions requires separation using pre-treatments of wet sieving
and density separation which is expensive, time consuming, and there-
fore preclude this from being part of most routine soil analysis proce-
dures (Ashman et al., 2003; McBratney et al., 2006; Viscarra Rossel
and Hicks, 2015).

It has been shown that spectroscopic methods can be used to mea-
sure soil carbon rapidly, inexpensively, and nondestructively (Janik
et al., 1998; Viscarra Rossel et al., 2006). A number of databases now
existwhere the SOC has been determined bymid-infrared spectroscopy
(Reeves et al., 2006; Zimmermann et al., 2007; Bornemann et al., 2008;
Yang et al., 2012) and recently Viscarra Rossel and Hicks (2015) report-
ed on the use of vis-NIR to predict carbon fractions used to populate soil
carbon models associated with the measured SOC. A few studies have
also reported on the prediction of soil structural properties, such as
soil aggregation, using NIR and MIR spectra (Chang et al., 2001;
Madari et al., 2005; Minasny and McBratney, 2008; Sarkhot et al.,
2011), but the aggregate associated carbon still has not been predicted
without fractionation. This researchwill investigate the potential to pre-
dict soil carbon fractions from bulk soil scanned using NIR and MIR
spectroscopy.

2. Material and methods

2.1. Soil sampling

Soil samples were obtained from a soil survey conducted in 2010
(Singh et al., 2012) which focused on developing a soil spectral library
for the prediction of soil carbon, primarily to be used to populate soil
carbon turnover models. It is known that variation in soil carbon is
strongly influenced by soil type and its associated variationwith climate
and land use (Lou et al., 2010) so tomaximize the variation in SOC in the
2010 soil survey of threemajor bio-regions of New SouthWales (NSW),
Australia, namely the South Eastern highlands, NSW South Western
Slopes and South Brigalow Belt covering an area of 158,000 km2

(Fig. 2) were sampled. The mean annual rainfall of the area sampled
varies from412 to 987mmand the land-use types range from cropping,
grazing of modified pasture, and natural vegetation. The sample
sites were identified using Conditioned Latin Hypercube sampling
(Minasny and McBratney, 2006) which enabled effective sampling of
the regional soil variation with a minimal number of sampling sites.
This resulted in 150 samples collected to a depth of 30 cmand the covar-
iates and sample locations are reported in Singh et al. (2012).

Due to the large number of samples that is generated when separat-
ing aggregates to study the size distribution and associated SOC the
sample selection for this study was reduced from 150 to 50 samples.
To maximize the changes in SOC and the variation in soil aggregation
these parameters were used to cluster the 150 soil samples collected
in the2010 survey into 10 clusters fromwhich the50 sampleswere ran-
domly selected (Fig. 1), using the influential properties of total organic
carbon (TOC%) the quantity of clay, silt and changes in the cation ex-
change capacity (CEC) (Amézketa, 1999; Six et al., 2002; Bronick and

Fig. 1. Sample selection for aggregates fractionation and spectroscopy measurements.

Table 1
Basic soil properties of the surface horizon of the soil orders sampled.

Soil order Number of samples pH Clay
(%)

Silt
(%)

Sand
(%)

TOC
(g/kg)

Chromosol 4 6.70 26 11 63 11.20
Kandosol 12 7.08 13 12 75 10.60
Kurosol 2 5.54 10 13 77 6.05
Rudosol 2 6.35 7 24 24 6.72
Sodosol 21 7.21 17 13 70 8.62
Vertosol 9 7.09 31 12 56 8.90

Table 2
The total organic carbon (TOC), pH, particle size distribution, mass recovery, and carbon
recoveries of bulk soil.

Character Mean St. dev. Max. Min. Skewness

pH 7.06 0.91 8.66 5.09 –0.31
Clay (%) 19 9.94 43 4 0.50
Silt (%) 12 4.55 24 3 0.98
Sand (%) 68 9.33 89 38 –0.40
Bulk carbon (g/kg) 10.21 6.51 29.80 2.53 1.72
Macroaggregate-C (g/kg) 3.09 2.22 10.90 0.80 2.35
Microaggregate-C (g/kg) 2.456 1.45 7.10 1.23
Organo-mineral-C (g/kg) 4.08 2.27 10.50 1.10 1.10
Mass recovery (%) 96.63 3.27 102.67 90.08
Carbon recovery (%) 98.25 19.22 128.20 74.84

208 M.P.N.K. Henaka Arachchi et al. / Geoderma 267 (2016) 207–214

Image of Fig. 1


Download	English	Version:

https://daneshyari.com/en/article/6408389

Download	Persian	Version:

https://daneshyari.com/article/6408389

Daneshyari.com

https://daneshyari.com/en/article/6408389
https://daneshyari.com/article/6408389
https://daneshyari.com/

