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A soil quality index (SQI) that integrates key soil attribute information would be beneficial in minimizing spill-
over effects of indiscriminate soil management such as shortages in food, water, energy and abate adverse reper-
cussions of climate change. In this study, a new SQI that synthesizes soil attributes is developed using partial least
squares regression (PLSR), and compared with crop yields. The field data were acquired in the year 2013 from 5
different on-farm siteswithinOhio, USA thatwere underNatural Vegetation (NV), No-Till (NT), and Conventional
Till (CT) management. The data shows that Pw (Pewamo silty clay loam) soil under NV land use had a higher
quality, than GWA (Glynwood silt loam), kbA (Kibbie fine sandy loam), CrA (Crosby silt loam), and CtA (Crosby
Celina silt loams) soil; whereas CTmanaged soil had Pw N CrA N kbA N CtA NGWA. The soil bulk density (ρb), elec-
trical conductivity (EC), available water capacity (AWC) and soil organic carbon (SOC) greatly influenced the SQI
especially at the soil surface. The SQI and yieldwere highly correlated, with that for corn (Zeamays L.) being 64%;
whereas soybean (Glycine max (L.) Merr.) was 100%. This finding is of special relevance because it explicates the
interconnection between on-farm soil quality vis-à-vis crop yields by objectively blending soil attributes fromdif-
ferent management scenarios and soil layers. Future research will investigate techniques for integrating this SQI
with socio-economic indicators of agro-ecosystem sustainability.
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1. Introduction

Indiscriminate land use and management, for example, through the
inappropriate use of technologymay degrade soils and ecosystems, thus
adversely affecting the socio-economic fabric of present and future gen-
erations (Arshad andMartin, 2002; Bouma, 2015; Lal, 2013; McBratney
et al., 2014). Approximately 800 million people are food insecure glob-
ally (Lal, 2013), and an estimated 2 billion people still lack access to safe
and affordable water (de Paul Obade et al., 2014; World Health
Organization and UNICEF, 2015). Unfortunately, tackling such issues re-
mains challenging, because soil which is a critical carrier of information
is poorly represented inmany ecosystemmodels (Bonfante and Bouma,
2015; McBratney et al., 2014). In comparison to air and water quality,
legislation and policy on soil quality are ambiguous, partly due to con-
flicting information from existing metrics, and the fact that major poli-
cies focus on food, water, biodiversity, health, and energy (Armenise
et al., 2013; Bonfante and Bouma, 2015). A universal model that quan-
tifies soil quality remains elusive (Bouma, 2002; de Paul Obade and
Lal, 2013). Oversimplification of soil quality information can result to in-
coherent and spurious conclusions which can result to disasters such as
pollution, poverty and malnutrition not being effectively managed. For
instance, simply relating crop yields with specific soil attributes
(e.g., bulk density (ρb)) is insufficient and subjective, because soil is a
complex “living”medium consisting of solid, liquid, and gaseous phases,

and plants conceptually uptake different nutrients simultaneously (de
Paul Obade and Lal, 2016; Ohlson, 2014). Uncertainties in soil informa-
tion are attributable to data artifacts, vague benchmarks, and validation
challenges (Andrews and Carroll, 2001; de Paul Obade and Lal, 2014;
Finzi et al., 2011; Karlen et al., 1997; Mota et al., 2014).

Soil quality encompasses the capacity of a specific kind of soil to ef-
fectively function through supporting plant and animal survival with-
out jeopardizing environmental quality (Andrews et al., 2004; Doran
and Zeiss, 2000; NRCS, 2012). Soil functions include biomass produc-
tion, climate regulation, heritage, hydrologic storage and pollution con-
trol (Bouma, 2015; Bouma and McBratney, 2013; de La Paz Jimenez
et al., 2002; Doran et al., 1996; Lal, 2009). Soil quality cannot be directly
measured, but is inferable through measuring soil physical, chemical
and biological properties. However, documenting biological properties
(e.g., earthworms, termite population, or microbial metabolic activity)
is practically challenging because this requires substantial taxonomy
knowledge (Askari and Holden, 2014; Nortcliff, 2002; Zornoza et al.,
2015).

Soil quality indices (SQIs) synthesize measured soil attributes into a
simplified format that can support informed decision making on sus-
tainable agro-ecosystem practices (Arshad andMartin, 2002). Soil attri-
butes include organic matter, respiration, texture, bulk density (ρb), pH,
infiltration, electrical conductivity (EC), aggregate stability, depth and
available water capacity (AWC) (Kladivko et al., 2014). A robust SQI
should: (i) be sensitive to soil management, (ii) be sensitive to changes
in soil function(s), and (iii) be easilymeasurable (Armenise et al., 2013).
An example of a SQI is the Soil Management Assessment Framework
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(SMAF) which is “score-based” and operates in two synergistic steps,
namely: (i) indicator selection and interpretation which entails the
transformation of measured data (e.g., soil nutrients) into unitless
scores, and (ii) aggregationwhich combines individual scores into a sin-
gle value (Andrews et al., 2002a, 2002b; Karlen et al., 1994a, 1994b,
2008; Wienhold et al., 2004). The “scoring functions” can be subjective
because the approach is based on perceived graphical relationships that
may follow a normal distribution, with an upper asymptote, or a lower
asymptote, determined through consensus or from literature review
values (de Paul Obade and Lal, 2014). Central to the determination of
soil quality in crop lands is the identification of management practices
that enhance crop yields without adverse effects on ecosystem health
(Arshad andMartin, 2002; Lal, 2013). Themajor challenge in soil quality
determination is notmissing soil property values,which can be estimat-
ed from other measured soil survey data using pedo-transfer functions
(PTFs) (Bonfante and Bouma, 2015), but how to objectively blend quan-
titative and qualitative data to generate holistic SQIs?

A robust SQI should accurately relate important facets influencing
biomass production with soil quality and management thus providing
information required to support proactive decision making (Andrews
and Carroll, 2001; Armenise et al., 2013; Yemefack et al., 2006).
Table 1 is a synopsis of common multivariate methods that can be
used to construct models to enhance the understanding of soil process-
es. Because of soil complexity, parametric methods may not be optimal
for merging soil attributes into a SQI. This study investigates the inter-
relationship between crop-yields and soil quality using a new SQI com-
putedby partial least squares regression (PLSR)which is a non paramet-
ricmethod, and thus does not require the following assumptions to hold
true: (i) independence of observation, (ii) linearity, (iii) homoscedastic-
ity, and (iv) normally distributed errors (Chong and Jun, 2005;
Mehmood et al., 2012). Unlike the Principal Component Analyses
(PCA) which is based on variance of the predictors, and screens infor-
mation using the eigen-value N1 criterion, the PLSR evaluates the co-
variance between response and predictor variables, and objectively
interprets all information. (Mehmood et al., 2011, 2012). This study
test 2 hypotheses: (i) the crop land soils i.e., under CT (Conventional
Till) or NT (No Till) is significantly distinct from soils under Natural Veg-
etation (NV) land use, and (ii) the SQI highly correlateswith crop yields.

2. Materials and methods

2.1. Study site

Datawas collected from the following field sites located in Ohio, USA:
Miami (40° 10′ 12″ N, 84 °07′ 41.7″W), Seneca site 1 (41° 00′ 25″ N, 85°
16′ 21″W), Seneca site 2 (41° 12′ 43″ N, 82° 54′ 39″W), Preble (39° 46′
09″ N, 84° 36′ 52″ W and 39° 41′ 45″ N, 84° 40′ 36″ W), and Auglaize
(40° 27′ 34.5″N, 84° 26′ 14.8″W);which have the soil types: CrA (Crosby
silt loam), kbA(Kibbie fine sandy loam), GWA (Glynwood silt loam), CtA
(Crosby Celina silt loams), and Pw (Pewamo silty clay loam), respectively.
Because these were privately owned fields, prior permission was sought
and granted from the farmers before the data could be acquired. The total
annual precipitation in Ohio averages between 90 to 120 cm, and the
mean temperature varies between 8.1 and 10.7 °C (DeForest et al.,

2012). The fieldmanagement practices were NTwith or withoutmanure
(M) and cover crops (cc), NV, and CT. The surface residue cover in CT
managed fields was low (i.e., b30%). The CT fields at Miami, Seneca,
and Preble sites were chisel plowed to approximately 20–25 cm depth,
except for the Auglaize site which was disked.

2.2. Sampling procedure

A total of 204 soils were sampled from the different field sites be-
tween April and May, 2013. For each site, the soil maps were
downloaded from web soil survey (http://websoilsurvey.sc.egov.usda.
gov/App/WebSoilSurvey.aspx) and used for reconnaissance, identifica-
tion of soil series, and selection of the sampling zone. Within each man-
agement entity (i.e., NT, CT and NV), 3 points located at the tips of an
arbitrary 10 m × 10 m × 10 m equilateral triangle were marked on the
ground; and the soils sampled at the same topographic slope
(i.e., summit). Each sampling point was geo-located using a global posi-
tioning system (GPS). Core and bulk soil samples were then obtained
from each point at 0–10, 10–20, 20–40, and 40–60 cm depths; totaling
12 samples per management category.

The yield data was determined from crops harvested between
August and September, 2013 at the same GPS location where soils
were sampled. Although this research targeted corn (Zeamays L.) fields,
it was realized during harvesting that some locations had soybean
(Glycinemax (L.)Merr.), and therefore soybean yieldswithin these loca-
tions were also included. The yield was measured as follows: (i) for
corn, the ears from a dimension of 2 rows and 2 m long were hand har-
vested and weighed in the field; however, the soybeans weights were
measured from 1 m2 dimension, (ii) the corn, and soybean were air
dried, shelled, after which the dry weight of the cobs, kennels, beans,
and remaining above ground vegetative biomass measured. The plant
water content was determined after oven drying subsamples of kernel,
cob and beans at 60 °C for 96 h, and the grain yields computed by
adjusting the respective weights to 15.5% moisture for corn, and 13.5%
for soybean. The Harvest Index (HI) was computed as the ratio of the
harvested grains, or beans to the total above ground vegetative biomass.

2.3. Data analyses

The field measurements and laboratory analyses followed the
USDA–NIFA project guidelines (project web site: sustainablecorn.org)
(Kladivko et al., 2014). Soil texture was assumed to be a fixed soil prop-
erty that is not significantly altered by management or even climate
(Askari and Holden, 2014; Bonfante and Bouma, 2015). Soil ρb which
rudimentarily explains soil quality, water flow and root development
was measured by the core method without stones. Soil moisture con-
tent was determined gravimetrically by oven drying a fraction of the
soil at 105 °C (Topp and Ferre, 2002), and the water retention deter-
mined by a combination of a tension table (Blanco-Canqui and Lal,
2007; Clement, 1996), and the pressure plate extractors (Klute, 1986;
Klute andDirksen, 1986). The availablewater capacity (AWC)was com-
puted from the difference in volumetric water content at field capacity
(FC) (−33 kPa), and permanent wilting point (PWP) (−1500 kPa)
(Dane andHopmans, 2002; Jemai et al., 2013). Alternately, the chemical

Table 1
Synopsis of multivariate parametric and non-parametric statistical methods.

Analyses Approach Data description Limitations

Multiple Linear Regression Stepwise, forward, backward Quantitative Parametric (require transformations);
multi-collinearity

Principle Component Analyses (PCA) Variance of x Quantitative, non-parametric 2 (or first few components)
Partial Least Squares (PLS) Covariance ~(x) and (y) Quantitative and qualitative; non-parametric

x: predictor variables.
y: response variables.
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