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For baselining and to assess changes in soil organic carbon (C) we need efficient soil sampling designs and
methods for measuring C stocks. Conventional analytical methods are time-consuming, expensive and impracti-
cal, particularly for measuring at depth. Here we demonstrate the use of proximal soil sensors for estimating the
total soil organic C stocks and their accuracies in the 0–10 cm, 0–30 cmand 0–100 cm layers, and formapping the
stocks in each of the three depth layers across 2837 ha of grazing land. Sampling locationswere selected by prob-
ability sampling, which allowed design-based, model-assisted andmodel-based estimation of the total organic C
stock in the study area. We show that spectroscopic and gamma attenuation sensors can produce accurate
measures of soil organic C and bulk density at the sampling locations, in this case every 5 cm to a depth of
1 m. Interpolated data from a mobile multisensor platform were used as covariates in Cubist to map soil organic
C. The Cubistmapwas subsequently used as a covariate in themodel-assisted andmodel-based estimation of the
total organic C stock. The design-based,model-assisted andmodel-based estimates of the total organic C stocks in
the study area were similar. However, the variances of the model-assisted and model-based estimates were
smaller compared to those of the design-based method. The model-based method produced the smallest vari-
ances for all three depth layers.Maps helped to assess variability in the C stock of the study area. The contribution
of the spectroscopic model prediction error to our uncertainty about the total soil organic C stocks was relatively
small. We found that in soil under unimproved pastures, remnant vegetation and forests there is good rationale
for measuring soil organic C beyond the commonly recommended depth of 0–30 cm.
Crown Copyright © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Soil organic carbon (C) helps to maintain soil health and productiv-
ity. It provides a primary source of nutrients for plants, helps to aggre-
gate particles and develop soil structure, increases water storage
capacity and availability for plants, protects soil from eroding and pro-
vides a habitat for soil biota. Capturing and retaining additional C in
soil can improve the quality and productivity of the soil to sustain
food production and simultaneously also mitigate the emissions of
greenhouse gases (GHG).

Thoughtful landuse andmanagement practices, such asmanagement-
intensive grazing, can help storemore soil organic C and offer good poten-
tial to improve soil quality, enable profitable food production and reduce
net GHG emissions (Machmuller et al., 2015). For baselining and to assess
the success of such practices, however, we need to accurately quantify the
variability of soil organic C stock in both space and time. Importantly, we

should aim to characterize its short range spatial variation, which can be
significant, and to monitor over time intervals that enable detection of
relatively small changes in C stocks.

Soil sampling protocols and conventional laboratory analyses can be
used to directly measure organic C stocks. The protocols typically in-
volve designing a sampling strategy, sampling the 0–30 cm soil layer
and measuring the organic C concentration, bulk density and gravel
content to derive the organic C stock of the soil in this layer. The
methods are time-consuming, expensive, involve much sample han-
dling and preparation and use complex procedures, which can be
prone to analytical inaccuracies. The complexity and expense of the
conventional approach are greater when there is a need to monitor
the organic C stock of deeper soil layers or entire profiles. There is evi-
dence that plants and cultivars with deeper and thicker root systems
can input stable forms of organic matter deeper in the soil profile
(Jobbágy and Jackson, 2000; Lorenz and Lal, 2005).

Conventionalmethods formeasuring changes in the organic C stocks
of soil are therefore impractical. If we are to increase our ability to
characterize and monitor changes in soil organic C stocks, we need to
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develop rapid, practical, accurate and cheaper methods to measure it
(Izaurralde et al., 2013). Proximal soil sensing provides a range of
tools that can be used to develop a multi-sensor system to efficiently
measure the organic C stock of soil profiles (Viscarra Rossel et al.,
2011). For example, electromagnetic induction sensors, gamma radiom-
eters and precise global navigation systems can produce multivariate
secondary information to help design sampling strategies and to map
soil C (e.g. Simbahan and Dobermann, 2006; Miklos et al., 2010). Soil
visible–near infrared (vis–NIR) spectroscopy can be used to measure
soil organic C in the laboratory and in situ in the field (Stenberg et al.,
2010).

Before we can start measuring with sensors however, we need to
know where to sample. Locations can be selected by probability sam-
pling (random sampling with known inclusion probabilities) or by
non-probability sampling, giving rise to two widely used philosophies:
the design- and the model-based approaches (de Gruijter and ter
Braak, 1990; Brus and de Gruijter, 1993; Papritz and Webster, 1995;
de Gruijter et al., 2006). In the design-based approach, the source of ran-
domness of an observation is the random selection of the sampling sites.
In the model-based approach, randomness originates from a random
term in the model of the spatial variation, which is added to the
model because our knowledge of the spatial variation is imperfect.
Thus, probability sampling is a requirement for the design-based ap-
proach, whereas it is not for the model-based.

Choosing the most suitable approach depends, amongst other, on
the motivation (Brus and de Gruijter, 1997). For example, the design-
based approach might be more suitable if the aim is to obtain estimates
of the ‘global’mean or total stock and their accuracies for an area, whose
quality is not dependent on the correctness of modelling assumptions.
The model-based approach might be preferable if we want to produce
a ‘local’ map of the soil organic C stock in the area. However, deciding
which approach to use is often more complicated because the design-
based approach can also be used for estimation of local means, and
the model-based approach can be used for global estimation. Further
discussion on the merits and disadvantages of each method can be
found in de Gruijter and ter Braak (1990), Papritz and Webster
(1995), Brus and De Gruijter (1997) and de Gruijter et al. (2006).

The possibility of using a regression model to assist with design-
based inference, in a model-assisted approach, was discussed by
Särndal et al. (1992) and Brus (2000). The approach uses auxiliary infor-
mation, captured in a regression model, to improve the accuracy of
design-based estimates of means and totals. There are fundamental
differences between a model-based and a model-assisted approach.
Significantly, the variance of a model-assisted estimate of the mean is
a sampling variance, not a model-variance. Unlike the estimates of the
model-based variance, the model-assisted estimates of the variance do
not rely on the correctness of the model's assumptions. That is, if the
assumptions underlying the regression model are violated, the
model-assisted approach can still produce an unbiased estimate of the
sampling variance (Brus, 2000).

Our aims here are to: (i) demonstrate the use of proximal soil
sensors to measure the soil organic C stock of grazing land to a depth
of 1 m, (ii) to compare the use of design-based, model-assisted and
model-based methods to derive baseline estimates of the mean and
total soil organic C stocks and their accuracies in the 0–10 cm,
0–30 cm and 0–100 cm layers, and (iii) to derive maps of soil organic
C stocks and their uncertainties for each of the three depth layers.

2. Methods

2.1. Study site

The study area is 2837 ha and is located in the Upper Hunter Valley
region, New SouthWales, Australia, south ofWollar. It is approximately
300 km northwest of Sydney and 50 km northeast of Mudgee, near the
Goulburn River National Park. The region has a temperate climate with

an average annual rainfall of approximately 600 mm. Geology consists
of shale, sandstone, mudstone conglomerates and coal. Landforms at
the site consist of gently sloping colluvium and undulating foothills ad-
jacent to north-flowing tributary creeks that are part of the Goulburn
River Catchment. There are steep timbered ridges that surround on
the south, west and east. The study area is usedmostly for cattle grazing
for beef production on rain-fed unimproved pastures, with remnant
vegetation and surrounding forests on higher elevations. The soil there
belongs to mostly the Dermosol and Kurosol orders in the Australian
soil classification (Isbell, 2002), approximately equivalent to Planosols,
Phaeozems and Acrisols in the World Reference Base system (IUSS
Working Group WRB, 2006).

2.2. Proximal soil multi-sensor survey and data preprocessing

A mobile multi-sensor platform (MMSP) was used to survey the
study area. The proximal sensors on the platform were an electromag-
netic induction sensor, the EM-38 Mk2 (Geonics, Canada), a gamma ra-
diometer with a 4.2 L NaI crystal detector (Radiation solutions, Canada),
and a real-time kinetic global navigation system (RTK-GNS) (Trimble,
USA).

TheMMSPwas driven between 10 to 20 kmh−1 and the sensor data
were recorded at a frequency of 1 Hz on parallel line transects with line
spacing between 20 and 60 m. Both the speed and the line spacing
depended on the navigability of the terrain. A map of the MMSP tracks
is show in Fig. 1a. Using each sensor, the data recorded were: electrical
conductivity andmagnetic susceptibility recorded from the0–0.5mand
0–1 m depths, (EC0.5, EC1, MS0.5 and MS1), respectively; gamma radio-
metrics total dose, potassium (K), uranium (U) and thorium (Th), re-
corded from around the top 0.5 m of soil (Cook et al., 1996) and
elevation with the RTK-GNS.

We checked the histograms of each sensor's data and checked for
outliers using the Mahalanobis distance on their correlations. These
and other spurious measurements were removed before proceeding
with our analysis.

The gamma U and Th bands possessed significant random noise be-
cause of the short integration time that we used for the mobile mea-
surements (i.e. 1 Hz). To improve the signal-to-noise ratio of these
data, we aggregated each channel spatially using a moving average
and using pointswithin a 20m radius. Thus, the gamma countswere in-
tegrated in space rather than in time (Viscarra Rossel et al., 2007).

We derived variograms for each of the sensor data and interpolated
them onto a 5 m grid with ordinary block kriging (Webster and Oliver,
2007). The digital elevation map (DEM), produced by kriging, was used
to derive terrain attributes that were thought to help describe the vari-
ation in soil organic C across the landscape. To derive the terrain attri-
butes, we used the Geographic Resources Analysis Support System
(GRASS) geographic information system (GIS) (GRASS Development
Team, 2012). The attributeswere slope, aspect, tangential, plan and pro-
file curvatures, flow accumulation and the topographic convergence
index (TCI) (GRASS Development Team, 2012).

The maps of the sensor data and the terrain attributes are shown in
Fig. 1b–o. Elevation in the study area ranges from 360 m in the north to
485 m on ridges to the south (Fig. 1b). The soil has small electrical con-
ductivity across the site but particularly on the ridges to the west
(Fig. 1j). The gamma K counts were generally greater at higher eleva-
tions along the ridges (Fig. 1l) and suggest the occurrence of soil derived
from parent material that contains K-bearing silicates.

2.3. Soil sampling

We selected sampling locations by probability sampling using a
stratified simple random design (de Gruijter et al., 2006). We used the
interpolated soil sensor data as the variates in the stratification, but
we first reduced dimensionality and eliminated multicollinearity be-
tween them, using a principal component analysis (PCA). The PCA was
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