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In the past decades the use of Vis–NIR spectra information applied to soil science studies has seen an exponential
growth, specially in predicting commonly used soil properties. We used the ability of Vis–NIR for detecting
physico-chemical characteristics alongwith fuzzy clustering techniques to discriminate spectrally homogeneous
zones in soil cores and applied a DG to define its boundaries i.e., SPD hor. We tested this methodology in 59 air
dried soil cores varying between 85 and 130 cm depth from the HWCPID, NSW, Australia. We observed that
SPD hor had great similarity with traditional horizons. The SPD hor were more homogeneous in terms of Vis–
NIR spectral variability and also offered more information about the relationship between the different spectral
classes. Because of the intrinsic characteristics of the methodology it can be easily applicable with or in conjunc-
tion with other proximal sensing devices which can add further detail when recognizing morphological soil
horizons.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It has been almost 100 years since Professor Curtis Marbut stated
that soil studies would not thrive as a science until a generally accepted
classification systemwas developed, suggestingwith this, the use of soil
horizons as a key element of it (Hartemink &Minasny, 2014; Bockheim
et al., 2005). Diagnostic soil horizons have been commonly accepted
since then, however it is of common knowledge in the soil science com-
munity that the identification of soil horizons and their boundaries
could inmany situations be inaccurate or biased due to varying descrip-
tion criteria. Furthermore, to classify a diagnostic horizon could require
additional laboratory analysis (Weindorf et al., 2012) and given analyt-
ical procedures may change in time, this could eventually lead to biased
observations (Ciampalini et al., 2013) and in the end misleading
interpretations.

For these reasons there is a general challenge in homogenizing soil
description criteria and a considerable amount of resources exclusively
assigned for this purpose worldwide e.g., Soil Taxonomy, World Refer-
ence Base for Soil Resources, Australian Soil Classification, and German
Soil Classification, among others (Ad-Hoc-AG, 2005; CSIRO, 2009; Jahn
et al., 2006; Schoeneberger, 2002).

As noted by Hartemink &Minasny (2014), soil science is witnessing
a historicmoment, where a vast amount of new technologies are replac-
ing or complementing the new soil science toolbox. Among these new

technologies, Vis–NIR stands as one of the most widely used in both re-
mote sensing and proximal sensing.

One of the biggest advantages in using Vis–NIR is that it can easily
capture a great part of the physico-chemical variability of the sample
which can be used later when comparing between different types of
materials.

The objective of the present work is to use Vis–NIR to recognize dif-
ferentmaterials in soil profiles and to apply amethodology for detecting
their relative patterns in depth, to finally establish in a quantitativeway,
boundaries between homogeneous groups of those materials i.e., soil
horizons. Previous studies have used quantitative approaches to distin-
guish between different soil materials and/or soil horizons (Weindorf
et al., 2012; Ben-Dor et al., 2008; Grunwald et al., 2001; Rooney &
Lowery, 2000). The main contribution of the present work resides in
the creation of a semi-automated soil morphological description proce-
dure where the final SPD hor are comparable with others through their
membership to global spectral classeswhich themselveswork as a basic
example of a classification system.

2. Materials and methods

2.1. Study area

The area of study was located approximately 140 km north of
Sydney in the HWCPID in the lower Hunter Valley (Fig. 1). Geologically
the area is situated in the Sydney basin, a depositional area formed by
both Permian and Triassic materials with thick successions of mainly
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siliciclastic rocks demonstrating a rhythmic pattern of sedimentation
followed by uncommon volcanic units and carbonate rocks in a few
areas (Percival & NSW, 2012). The dominant soil types according to
the Australian Soil Classification (Isbell, 2002) are Red and Brown
Dermosols (depending in the base saturation value, equivalent to
some Udults, Udalfs and Udepts in Soil Taxonomy) and on some hill
summits Red Calcarosols (equivalent to some Typic Calciudepts in Soil
Taxonomy) (Odgers et al., 2011; Staff, 1999).

2.2. Sampling design

The dataset consisted of 59 soil cores varying between 85 and
130 cm depth taken 50 m away from a previous soil survey which
followed a Latin hypercube sampling design where compound topo-
graphic index, parent material and normalized difference vegetation
index were used as environmental variates (Minasny & McBratney,
2006) in order the maximize the variability of the samples, the cores
were air dried and scannedwith an ASD Agrispec 350-2500 spectrome-
ter using a Spectralon panel as a reference, every 2 cm resulting in a
datasets of 3190 separate soil scans, additionally the soil cores were
morphologically described following CSIRO (2009) specifications
(Fig. 1).

2.3. Processing of Vis–NIR spectra for SPD hor detection

The following treatmentswere employed on the dataset in the order
below:

◊ Step correction between Vis–NIR sensors overlap in bands 1000 nm
and 1800 nm.

◊ Selection of spectral region between 500 nm and 2450 nm.
◊ Conversion to absorbance from raw reflectance data.
◊ A secondorder Savitzky–Golayfilterwith a smoothingwindowof 11

bands to each spectrum.
◊ Based on the fact that soil spectral features change smoothly with

depth we used a running median smoother on each wavelength of

the spectrum depth-wise using a smoothing filter described in
Hardle & Steiger (1995) and implemented by Martin Maechler in R
language (R Core Team, 2013). The smoother basically works as a
moving window of variable size throughout the series of numbers
i.e., the values of each band through the soil profile. The selected
size of thewindowwas 10 cm(5 observations every 2 cm) after con-
sidering the observed spectral variation in the sampled soil cores
and the different windows size tested.

◊ Selection of every 10th band in order to reduce correlation between
variables and high dimensionality.

◊ Standard normal variate transformation of the spectra.
◊ Outlier detection using a Mahalanobis distance criterion (Filzmoser

et al., 2005), cores with more than 10 outliers were excluded from
the following analyses.

A principal component analysis was performed to each processed
spectrum and the first 5 components were used (N95% of variance
explained) for the next stage of fuzzy classification.

2.3.1. Fuzzy clustering
A fuzzy clustering algorithm (Maechler et al., 2014) was performed

on the entire dataset. The algorithm aims to minimize the objective
function, (Eq. (1)):
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where uik and ujk are the memberships of samples i and j to class k, n is
the number of observations, c is the total number of classes, r is the
membership exponent and d(i, j) is the dissimilarity between observa-
tions i and j. Note that if r tends to 1 it gives increasingly crisper cluster-
ings whereas r tends to infinite it leads to complete fuzziness as
specified in Maechler et al. (2014).

Fig. 1. Lower Hunter valley study area and sample locations, NSW, Australia.
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