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This paper presents an approach to predicting three-dimensional (3D) variation of soil organic matter (SOM)
concentration by integrating a similarity-based method with depth functions. It was tested in a small hilly land-
scape. A depth functionmodelwas constructed tofit SOMprofile distribution using a linear relation in the topsoil
and a power function in the subsoil. Then, under the assumption that similar environmental conditions at two
sites would lead to the development of similar profile morphologies and thus similar depth function parameters,
the similarity-based method was used to spatially interpolate the depth function parameters based on their re-
lationships with environmental variables. With the values of the parameters for every location, a 3D map of
SOM distribution was generated. The predicted SOM pattern well reproduced the statistical distribution of the
pedon dataset used in this study. The overall mean error (ME) was 0.06 g kg−1 and ratio of performance to de-
viation (RPD)was 2.34.We conclude that the proposed approach is effective and accurate for 3D SOMprediction.
It overcomes two drawbacks of the frequently used pseudo 3D soil mapping approach: (1) the neglect of vertical
soil pattern when performing horizontal soil predictions, and (2) the repeated applications of depth function fit-
tings in the mapping process, both of which may lead to prediction errors. Moreover, the similarity-basedmeth-
od is a transparent and traceable prediction process, allowing for easy interpretation of its results. This is useful
for understanding soil–environmental relationships and processes. The method thus is an attractive alternative
to the commonly used non-linear “black-box” techniques such as artificial neural networks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Detailed and accurate three-dimensional (3D) soil information is re-
quired for estimating soil carbon stocks andmodeling hydrological pro-
cesses (Sanchez et al., 2009). Conventional polygon-based soil mapping
techniques usually cannot provide such information. To meet this re-
quirement, theGlobalSoilMap.net project, officially launched by a global
consortium of scientists in 2009, intends to develop digital soil mapping
methods to produce a fine-resolution, 3D soil data products across the
globe (GlobalSoilMap Science Committee, 2013).

Many attempts have beenmade on 3D soil mapping (Minasny et al.,
2013; Arrouays et al., 2014).Most considered it asmultiple 2D soilmap-
ping operations at a set of predefined depth intervals (Tekin et al., 2008;
Grimmet al., 2008; Vasques et al., 2010a,b;Malone et al., 2009; Adhikari
et al., 2013; F. Liu et al., 2013; Odgers et al., 2015). These 2Dmapping re-
sults are represented as depth averages (for concentrations) or sums
(for stocks). These averages can be reconstructed into a full 3D soil
property map (Malone et al., 2011; Lacoste et al., 2014). Although

multiple 2Dmapping is simple to implement, F. Liu et al. (2013) argued
that it is a pseudo 3Dmapping approach and has two drawbacks. One is
that soil variation pattern in the vertical dimension is neglected when
performing separate horizontal soil predictions for each depth
interval. The other is that depth function fitting is often applied twice
in the mapping process. The first is to standardize genetic or field-
recorded horizon-based soil observations to pseudo-observations with
a set of consistent depth intervals as input to the horizontal prediction
models. The second is tofit soil predictions of the depth intervals to pro-
duce vertically continuous prediction for each location in the area of in-
terest. Any errors in the fitting are thus repeated andmay bemagnified.

To overcome these drawbacks, some attempts have been made to
develop true 3D soil mapping approaches (Minasny et al., 2006;
Meersmans et al., 2009; Mishra et al., 2009; Kempen et al., 2011;
Veronesi et al., 2012, 2014). These methods perform horizontal spatial
prediction directly on vertical soil variation pattern, represented by
the parameters of depth functions. The 1D vertical and 2D horizontal
predictions are thus tightly integrated in the mapping process. More-
over, depth function fitting is applied only once in themapping process.
However, in these attempts the depth functions were combinedmainly
with statistical and geostatistical techniques (i.e., multiple regression
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and ordinary kriging) or data mining techniques (i.e., artificial neural
networks and random forests). The former generally requires fairly
dense soil observations to ensure reliable model calibration, especially
for variogram model estimation (Park and Vlek, 2002; Lacoste et al.,
2014). The latter uses “black-box” models with a non-transparent
prediction process, making it difficult to interpret their results. This
non-transparency is a major concern to soil scientists because the inter-
pretation of the prediction model is desirable for gaining knowledge of
soil–landscape processes, e.g., by which soil organic C is accumulated,
transformed and distributed in 3D.

An alternative to these techniques is a similarity-based prediction
method. This class of methods predicts soil property values at an
unsampled location based on its environmental similarity with ob-
served sites. It has no requirements regarding the number and distribu-
tion of soil observations (Zhu et al., 2010). Moreover, its prediction
process is transparent and traceable, allowing for easy interpretation
of its prediction results. It also has one of the merits of the “black-box”
models, i.e., the ability to dealwith complex and nonlinear relationships
between soil and environment. Such relations are likely for soil organic
C, due to the complexity of processes by which it is accumulated, trans-
formed and distributed in 3D.

Therefore, the objective of this study was to examine the effective-
ness of integrating a similarity-based prediction method with depth
functions to predict 3D distribution of soil organic matter (SOM)
concentration.

2. Material and methods

2.1. Study area and data sets

The description of the study area can be found in F. Liu et al. (2013).
The major soil types in this area include the Haplic Cambisols (Alumic,
Dystric), Haplic Cambisols (Dystric, Ferric, Rhodic), Haplic Cambisols
(Dystric, Ferric), Haplic Cambisols (Dystric), Haplic Cambisols,
Hyperskeletic Leptosols, and Hydragric Anthrosols (Oxyaquic) accord-
ing to the World Reference Base for soil resources (WRB) (IUSS
Working Group WRB, 2014). Fig. 1 shows the general catenary se-
quence of the soil types in this area. Table 1 lists their typical environ-
mental conditions.

We used the same set of 79 pedon sites as F. Liu et al. (2013). Fig. 2a
shows the imbalanced spatial distribution of these sites. The soil sample
collection and SOMmeasurement of soil horizonswere described in the
previous paper. We also used the same digital elevation model and
Landsat Thematic Mapper data. The environmental variables used in
this study include elevation, slope gradient, mean curvature, conver-
gence index, topographic wetness index (TWI), and TM bands 3, 4 and
5. Fig. 2b shows the interpreted map of land uses including forests,
shrubs, tea plantations, cultivated uplands, and paddy fields, with an
overall accuracy of 80%.

2.2. The approach of 3D SOM prediction

The approach contains three steps. First, a depth functionmodel was
constructed to fit SOM profile distribution for each pedon. Second, a
similarity-based method was used to interpolate the parameters of
the depth function across this area. Third, with the values of the param-
eters for every location, 3D SOM distribution was generated.

2.2.1. Construction of depth function of SOM concentration
We assumed that SOM concentration varies continuously with

depth. To find the most accurate depth function with which to describe
SOM variation with depth, we evaluated the power, exponential, and
logarithmic functions for their ability tomatch the observed SOMprofile
variation. These functions were considered due to their mathematical
simplicity (only two parameters). The bulk horizon SOM value repre-
sents the average value over the horizon (McBratney et al., 2000). We
fitted the three functions through the mid-depth of horizon data for
each of the 79 profiles. The power function best described the observed
SOM variation with depth. But its fittings tended to overestimate SOM
concentration near the soil surface.We thus introduced a linear function
to describe SOMvertical variation near the soil surface and used a power
function to describe that below. The resultant depth function model is
continuous but with discontinuous derivatives at the crossover depth:

Y ¼ k0 ux0ð Þk1 þ a X−x0ð Þ; X≤x0
k0X

k1 ; XNx0

(
ð1Þ

where Y is the SOM concentration, X is the soil depth, k0 and k1 are the
parameters of the power function, a is the slope of the linear function, x0
is the crossover depth of the node between the linear function and the
power function, and u is an adjustment factor to compensate for the dif-
ferent uses of the crossover depth (x0) when considering the effects of
different land uses.

For cultivated lands, the first soil horizon is usually the tillage layer,
in which SOM concentration was almost constant to the tillage depth
due to frequent mixing of the topsoil. For other lands, the first horizon
had a near-linear SOMdecreasewith depth. Thus, the value of awas de-
fined to be the trivial slope 0 for paddy fields, cultivated uplands and tea
plantations, and −1 (i.e., linear decrease) for forests and shrub lands.
The value of u was set to be 1/2 for cultivated lands and 1 for other
lands. From the land use map (Fig. 2b), the values of a and u were de-
rived for every location in this area. The value of x0 was set to the
lower depth limit (dh1) of the first horizon for the cultivated lands and
the mid-depth (dh1/2) of the first horizon for other lands. Note that
dh1 is known from the profile description, and is not fit. We fitted this
depth function model for each profile and estimated the values of the
parameters k0 and k1 at all 79 sites using curve fitting by the ‘nls’ func-
tion of the R environment (R Development Core Team, 2012).

Fig. 1. General catenary sequence of the soil types in this landscape.
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