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Two corresponding issues concerning Digital Soil Mapping are the demand for up-to-date, fine resolution soil
data and the need to determine soil–landscape relationships. In this study, we propose a Bayesian Network
framework as a suitable modelling approach to fulfil these requirements. Bayesian Networks are graphical prob-
abilisticmodels inwhich predictions are obtained using prior probabilities derived from eithermeasured data or
expert opinion. They represent cause and effect relationships through connections in a network system. The ad-
vantage of the Bayesian Networks approach is that themodels are easy to interpret and the uncertainty inherent
in the relationships between variables can be expressed in terms of probability. In this study we will define the
fundamentals of a Bayesian Network and the probability theory that underpins predictions. Then, using case
studies, we demonstrate how they can be applied to predict soil properties (bulk density) and soil taxonomic
class (associations).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

To satisfy the growing demand for up-to-date, fine resolution soil
data, there is a call to fully explore the potential of current mapping
and modelling software, and apply existing modelling techniques in
novel and innovative ways (Hartemink and McBratney, 2008). Predic-
tive modelling of the spatial pattern of soil types and properties is
based on a quasi-mechanistic understanding of soil formation and the
factors that drive soil variation in the landscape, namely the ClORPT fac-
tors (Climate, Organic activity, Relief, Parent material and Time; Jenny,
1941). The relationships between soil forming factors and soil proper-
ties are complex and several non-linear modelling techniques have
been employed to represent them including Random Forests (RFs)
(Liaw and Wiener, 2002; Grimm et al., 2008; Wiesmeier et al., 2011)
and Artificial Neural Networks (ANNs) (Agyare et al., 2007; Zhao et al.,
2010). A principal disadvantage of these methods is that they are
‘black-box’, meaning that it is often difficult to interpret the relationship
between response and predictor variables in physical terms (Suuster
et al., 2012). In Bayesian Networks (BNs) the relationship between soil
forming factors and soil properties can be directly addressed (Tavares
Wahren et al., 2012).Many significant soil processes are not particularly
well understood at the landscape scale andwould benefit from the clar-
ity and insight provided by BNmodelling (e.g. Braakhekke et al., 2012).

Chen and Pollino (2012) stated that improving system understanding is
a key motivation for using a BN.

BNs are graphical probabilistic models in which predictions are
obtained using prior probabilities derived from either measured data
or expert opinion. They represent cause and effect relationships via con-
nections in a network system (Hough et al., 2010) but they differ from
other network based methods, such as ANNs, in that the structure of
the network and the interactions between nodes are defined by the
user based on prevailing process understanding. BNs are a flexible
way of structuring process understanding stochastically and, unlike
purely deterministic models, reflect the uncertainty surrounding
cause–effect relationships (one event leading to another) by expressing
the relationships between soil classes/properties and the covariates as a
probability (Dlamini, 2010). They are also ideal for addressing problems
where data are limited (Kuhnert and Hayes, 2009). BNs have been ap-
plied to ecological systems (McCann et al., 2006), notably conservation
(McCloskey et al., 2011), habitat mapping (Smith et al., 2007), and risk
mapping of events such as wildfire (Dlamini, 2010) and peat erosion
(Aalders et al., 2011). Bayesian modelling approaches have also been
applied to modelling soil classes (Skidmore et al., 1996; Bui et al.,
1999; Mayr et al., 2010) or soil attributes (Cook et al., 1996; Corner
et al., 2002). Despite this, BNs are not yet established as a mainstream
tool in Digital Soil Mapping (DSM).

BNs were developed from the branch of mathematics known as
probability theory, in particular from probabilistic reasoning (Pearl,
1988). Unlike deterministic models, BNs offer a structured method of
dealingwith uncertainty that, as a rule, diminishes asmore information
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is gathered. In the case of predicting the spatial distribution of soil clas-
ses and properties, the relationships between variables are highly
uncertain and data availability is often limited, so BNs have great poten-
tial as a predictive tool (Finke, 2012). Another appealing aspect of BNs is
their ability to integrate expert knowledge into themodel, which can be
used to supplement measured data, or define relationships between
variables directly. There has been a long-standing drive to formally
introduce expert knowledge into soil mapping, usually focusing on
fuzzy set theory or possibility theory (McBratney and Odeh,
1997). In contrast, BNs use probability theory, which can be seen
to offer a more coherent structure to decision making problems
(Degroot, 1988), although, there has been some debate as to
which is the superior approach (Krueger et al., 2012). In this
study, BNs are explored for two typical problems in DSM; i) the pre-
diction of a soil property, soil bulk density, and ii) the prediction of a
soil taxonomic class.

BNs have a number of advantages compared with other modelling
techniques regularly employed in DSM:

- The real strength of BNs can be fully appreciated in situations where
domain knowledge is crucial and availability of data is scarce such as
in Case Study 1 on bulk density.

- While BNs did not improve predictive performance, they have the
advantage of offering some process-based insight (Correa et al.,
2009). This has been confirmed in this study where the results are
very similar to (albeit slightly lower than) the ANN and RF black-
box modelling techniques which have previously been used to pre-
dict topsoil Db with the same dataset (Taalab et al., 2012).

- In recent years, the focus of DSM has moved away from straightfor-
ward classification of soils towards developing a better understand-
ing of the spatial distribution of soils in relation to the wider
environment (Grunwald, 2009). This is necessary in order to resolve
challenges such as climate change, desertification, and food produc-
tion which are putting increasing pressure on soils as a resource
(Hartemink and McBratney, 2008).

- BNs provide an opportunity to assess the understanding of soil
processes. In conjunction with expert knowledge, BNs can either
confirm or contradict the opinions of the expert(s). If the BN contra-
dicts what the expert believes, it can prompt further investigation
into the process, indicating a knowledge gap or a problem with the
model itself. If the latter is the case, it is easy to amend both the
model structure and the probabilistic relationship between nodes.
Identifying the source of predictive inaccuracies in a black-box
model is much less straightforward.

- As BNs are based on process understanding they can be used to an-
swer specific questions using predictive reasoning. For example,
what is the probability of X, given certain information, a capability
that black boxmodels do not possess. In addition, BNs are also capa-
ble of diagnostic reasoning. For example, given an outcome, the
favourable conditions likely to lead to this outcome can be predicted.

In summary, the major appeal of BNs is their clarity, which allows
experts to judge whether the model makes pedogenic sense and to de-
velop a better understanding of the soil processes.

2. Materials and methods

2.1. Theory

BNs are named after the Reverend Thomas Bayes who, in the 18th
century, developed a theorem regarding changing probabilities given
new information (Bayes, 1783). The basis of a BN is conditional proba-
bility, which can be explained using an example from Jensen (1996),
where a statement of conditional probability reads

“Given an event B, the probability of event A is x.”

In mathematical notation this would read

P AjBð Þ ¼ x: ð1Þ

This statement holds true, only if all other information which could
affect event A is known and has been accounted for. The basic rule of
conditional probability is:

P AjBð ÞP Bð Þ ¼ P A;Bð Þ ð2Þ

where P(A,B) is the probability of the joint event A and B both being true
(A ∧ B). From this, the Bayes Rule (Eq. (3)) can be derived.

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ : ð3Þ

This rule forms the basis of BN modelling, as we can use Bayes'
rule to inform us of the probability of event A given information
about B. Referring to Eq. (1), the posterior probability P(A|B) was
an unknown x, we now see that it can be calculated using our prior
belief in the occurrence of event A P(A) and event B P(B) and the
probability of B given that A has occurred P(B|A). This is known as
Bayesian inference and to illustrate how this might work in practice
for DSM applications, we adapt an example given by Aitkenhead and
Aalders (2009).

From Eq. (3), P(A|B) is the posterior probability of event A (e.g. high
bulk density; Db) given B (e.g. arable land use) (note that the class ‘high
bulk density’ is an example of discretization of a continuous variable
into a set of classes, the boundaries of whichwould need to be defined).
P(A) is the probability that bulk density is ‘large’ (a prior probability de-
rived from either data i.e. the percentage of samples recorded as high or
from expert opinion), P(B) is the probability of the occurrence of arable
land (proportion of the study area that is arable land) and P(B|A) is the
proportion of high bulk density samples that are found on arable land.
For example, if 30% of the total number of Db samples are classified as
large, i.e. P(A)= 0.3, 40% of the terrain in the study area is classed as ar-
able, i.e. P(B)= 0.4., and the proportion of highDb samples found on ar-
able land is 50% i.e. prior probability P(B|A) = 0.5. This probability can
be generated either by expert knowledge or using observed data. Com-
bined, these probabilities give the probability that if the land is arable,
the bulk density will be high, known as the posterior probability P(A|
B). In this instance;

P AjBð Þ ¼ 0:5 � 0:3
0:4

¼ 0:375 ð4Þ

hence, there is a 37.5% probability that Db will be high on arable land.
In reality, when dealing with complex problems in soil mapping,

there will be numerous factors that influence variables of interest.
Hence BNs are designed to link large numbers of influencing variables
and combine the conditional probabilities of each. BNs comprise two
components; 1) a directed acyclic graph (DAG),where each node repre-
sents a variable inwhich the directed links between nodes represent the
conditional dependencies of the model and 2) a quantitative compo-
nent of a network consisting of conditional probability tables (CPT)
that accompany each node, which define the dependencies of each var-
iable. Each CPT contains a list of possible states that could be applied to
the variable. Using an example adapted from Nadkarni and Shenoy
(2004), Fig. 1 shows a BN comprised of four variables: Land Use (L),
Soil Group (S), Organic Carbon Content (C) and Soil Bulk Density (D).
The directional arrows between variables indicate causality. The vari-
ables with arrows leading into them are known as the ‘child nodes’
and the variables where the arrows originate are known as ‘parent
nodes’. Each state ismutually exclusive and the list is definitive; for clarity,
we have kept the number of states in Fig. 1 to a minimum. It is acknowl-
edged, however, that in complex natural systems the environmental
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