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The loss function expresses the costs to an organization that result from decisions made using erroneous infor-
mation. In closely constrained circumstances, such as remediation of soil on contaminated land prior to develop-
ment, it has proved possible to compute loss functions and to use these to guide rational decision making on the
amount of resource to spend on sampling to collect soil information. Inmany circumstances it may not be possi-
ble to define loss functions prior to decision making on soil sampling. This may be the case when multiple deci-
sionsmay be based on the soil information and the costs of errors are hard to predict.We propose the implicit loss
function as a tool to aid decision making in these circumstances. Conditional on a logistical model which ex-
presses costs of soil sampling as a function of effort, and statistical information fromwhich the error of estimates
can bemodelled as a function of effort, the implicit loss function is the loss functionwhichmakes a particular de-
cision on effort rational. After defining the implicit loss functionwe compute it for a number of arbitrary decisions
on sampling effort for a hypothetical soilmonitoring problem. This is based on a logisticalmodel of sampling cost
parameterized from a recent survey of soil in County Donegal, Ireland and on statistical parameters estimated
with the aid of a process model for change in soil organic carbon. We show how the implicit loss function
might provide a basis for reflection on a particular choice of sampling regime, specifically the simple random
sample size, by comparing it with the values attributed to soil properties and functions. In a recent study rules
were agreed to deal with uncertainty in soil carbon stocks for purposes of carbon trading by treating a percentile
of the estimation distribution as the estimated value.We show that this is equivalent to setting a parameter of the
implicit loss function, its asymmetry.We thendiscuss scope for further research to develop and apply the implicit
loss function to help decision making by policy makers and regulators.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The collection of soil information, both inventory and monitoring
over time, is sponsored by various end-users including land-managers,
regulators and policy-makers. In all cases the end-user must accept
that there is uncertainty in the information which they obtain. This un-
certainty could result in a cost due, for example, to over- or under-
application of a fertilizer, a decision to implement unnecessary land re-
mediation or failure to identify decline in soil quality and respond with
appropriate policy. The uncertainty of soil information, given some fixed
methodology, depends on the effort that can be deployed in field sam-
pling, and so the cost to the sponsor. The sponsor is therefore faced
with the problem of deciding howmuch effort it is appropriate to invest
in soil sampling.

A rational approach to this problem is to choose a level of investment
in soil sampling such that the benefit to the sponsor from the informa-
tion over the cost of obtaining it is maximized. Yates (1949) was,

perhaps, the first to point this out formally. To do this requires the spec-
ification of a loss function. A loss function expresses the costs incurred by
a data-user (which may be an individual, a business or society at large)
which result from using some estimate,ex, of a quantity (for example, an
estimate of the mean concentration of available phosphorus in the soil
of a field) to make a decision (e.g., a fertilizer rate) when the true
value of the quantity is xt. The loss is, in general, non-zero when ex≠xt ,
i.e., the information is erroneous. In our example the loss is incurred be-
cause of under-application of fertilizer and consequent loss of potential
profitable yield (exNxt) or wasteful over-fertilization (exbxt) such that the
marginal gain in yield does not cover themarginal cost of the input, and
other costs may be incurred because of the environmental impact of the
surplus nutrient. Because overestimation and underestimation incur
losses for different reasons the loss function may be asymmetrical.
Given a loss function and an error distribution for the information, one
may make a decision which minimizes expected loss (e.g., Journel,
1984; Goovaerts, 1997). Some form of loss function, not necessarily a
continuous function of the target variable, may be used to plan optimal
sampling for decision-making (e.g., Yates, 1949; Ramsey et al., 2002;
Boon et al., 2011) or to make decisions as to whether and how to
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supplement existing soil data by further sampling (e.g., Marchant et al.,
2013).

Such rational planning of soil sampling requires that loss functions
can be determined. This is plausible in some cases, where the analysis
of decisions based on the soil information is relatively simple (e.g., re-
mediate or do not remediate) and where reasonable values can be ob-
tained for costs under different combinations of decision and future
scenarios (chose to remediate — land was not contaminated; chose
not to remediate — land was contaminated etc.). Some of the most so-
phisticated analyses of decision-making fromuncertain soil information
have been undertaken in the context of contaminated land where rela-
tively simple decision trees based on single variables can be defined
(e.g., Ramsey et al., 2002). Similar analyses have been undertaken for
nutrient sampling at field scale by arable growers (Marchant et al.,
2012). There is a wider literature on the use of loss functions for plan-
ning and control, particularly in manufacture (e.g., Freisleben, 2008;
Pan and Chen, 2013), and these methodologies may be useful in envi-
ronmental management and regulation. We call loss functions that
can be developed in this way explicit loss functions.

In many cases, however, this is not a feasible approach. For example,
when considering the design of a national-scale soil monitoring system
for theUK, Black et al. (2008) asked sponsors (a range of regulators, gov-
ernment departments and public bodies responsible for environmental
management) to give acceptable tolerances on estimates of regional
and global mean values of soil properties, and changes in these proper-
ties. They then computed the costs of achieving these targets under dif-
ferent sampling regimes. Note that the process of defining acceptable
tolerances was not straightforward, and was identified as an area for
continued attention. Note also that the process was essentially ‘open-
loop’. There is no consistent method to evaluate whether the final
costs are commensurate with the benefits of achieving the original tar-
get precision. Effectively it is assumed that the target precision must be
achieved regardless of cost. However, if the sponsor decided that the
total cost of the resulting scheme was unaffordable then it is not clear
how to proceed, other than by assuming that the cost is fixed and
reporting the corresponding precision.

It is, perhaps, not surprising that sophisticated decision analysis is
possible for soil sampling on possibly-contaminated land, whereas
planning of regional or national-scale soil monitoring and inventory re-
mains ‘open-loop’. In the former case there is generally a fairly simple
binary decision to be supported (remediate or do not), and the costs
under different decisions and scenarios (e.g., of remediating a site
prior to development, of undertaking remediation after development
on discovery that contaminants do exceed regulatory thresholds, etc.)
can be reasonably approximated. For example, Ramsey et al. (2002)
use approximate remediation costs, legal costs and liabilities in their
case studies. In contrast, a soilmonitoring schemeat regional or national
scalewill serve a range of purposes, not all of them foreseeable, and sup-
port a range of decisions and actions the consequences ofwhich it is dif-
ficult to predict or quantify, let alone cost. One may therefore think it
unlikely that policy makers or their advisors would be any more able
to specify explicit loss functions for errors in soil information than
they can specify acceptable confidence limits for estimates.

This could be regarded as an argument against any attempt to use a
cost–benefit analysis when considering the design of soil inventory and
monitoring, consistentwith the criticisms of the ecosystem services val-
uation approach (Robinson et al., 2013) as voiced, for example, by
Matulis (2014). However, Hansjürgens (2004) suggests, without con-
ceding the broader agenda of monetizing the value of ecosystem com-
ponents, that approaches based on cost–benefit analysis can provide a
useful framework for the collection and evaluation of environmental in-
formation. That is the basis of our approach. Specifically we develop the
concept of the implicit loss function. Consider a case of the ‘open-loop’
approach to planning of inventory and monitoring where a sponsor
states that ‘N samples are affordable’. The implicit loss function is the
loss function implicit in that decision. That is to say it is the particular

loss function which would lead to a selection of sample size N to maxi-
mize the benefit of sampling over its costs. In short, the implicit loss
function, given some decision on how to undertake sampling, is the
loss function under which that decision is rational. Our contention is
that, by computing and examining implicit loss functions, one may,
without entirely closing the planning loop, provide a basis for more ra-
tional reflection on sample effort by examining whether the form of the
implicit loss function is congruent with the sponsor's expectations and
any valuations of the target soil variable.

In this paper we develop the concept of the implicit loss function.
While implicit loss functions have been used in financial analysis, we
believe that they are a novel technology in the valuation of environmen-
tal information. There are three novel developments in this paper. First,
we show that, for a specified sampling strategy which determines the
precision of the resulting estimate as a function of sample size (e.g., a
simple random sample from a variable of standard deviation σ), a
given relationship between sample size and the cost of sampling and a
specified asymmetry of the loss function, a unique implicit loss function
exists for some specified sample size. Second, we point out that the
asymmetry of the general linear loss function is implicit in certain
criteria agreed in Australia for valuing soil carbon stocks from uncertain
estimates. This suggests that the asymmetry of loss functions could be
elicited from data users. Third, we use soil sampling records from a
part of Ireland with rugged terrain and relatively sparse communica-
tions to develop a simple logistical model for sampling which allows
us to estimate costs for particular sampling intensities. On the basis of
these we present a hypothetical example of the implicit loss function
for a case of monitoring change in soil carbon.

2. Theory

In this section we review the loss function and its use to determine
optimal sample size, and develop the explicit expected loss under nor-
mal errors with a linear loss function. We then introduce the implicit
loss function.

2.1. The loss function and optimal sample size

The most general form of the loss function is

L exjxtð Þ ð1Þ

which is the loss incurred as a result of a decision made on the assump-
tion that some variable X takes the valueexwhen the true value is xt. We
define the loss as the difference between all costs incurred as a result of
the decision between the present and some future time horizon over
and above any costs thatwould be incurred as a result ofmaking the de-
cision on the assumption that X = xt. It follows that

L exjxtð Þ ¼ 0; ∀ ex ¼ xt ; ð2Þ

so onemay think ofL exjxtð Þas the difference between the value of imper-
fect information ex and perfect information xt. However,

L exjxtð Þ≥0; ∀ ex≠xt; ð3Þ

the perfect information is never worth less than the imperfect informa-
tion, but is not necessarily worth more. If, for example, X is the concen-
tration of a soil contaminant and remediation is required if and only if
the concentration exceeds a regulatory threshold, x N xR, then the loss
function in respect of decisions on remediation is zero for all cases
where

ex≤xR ; xt≤xRf g;
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