
Mid-infrared spectra predict nuclear magnetic resonance spectra of
soil carbon

Mohsen Forouzangohar a,⁎, Jeffrey A. Baldock b, Ronald J. Smernik c, Bruce Hawke b, Lauren T. Bennett a

a School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia
b Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Glen Osmond, South Australia 5064, Australia
c School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, Urrbrae, South Australia 5064, Australia

a b s t r a c ta r t i c l e i n f o

Article history:
Received 18 November 2014
Received in revised form 16 February 2015
Accepted 18 February 2015
Available online 28 February 2015

Keywords:
Soil organic carbon
Mid-infrared spectroscopy
Solid-state C-13 NMR spectroscopy
Partial least-squares

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterising the complex chem-
istry of soil organic carbon (SOC), but is prohibitively expensive, time-consuming and technically-demanding.
Diffuse reflectance mid-infrared (MIR) spectroscopy is an attractive alternative because it is a high-throughput,
cost-effective and easy-to-use technique that provides information on the amount and nature of soil mineral and
organic components. However, interpretation of complex MIR spectra can be challenging due to difficulties with
distinguishing SOC peaks from overlapping mineral-related peaks. We present a novel approach to predict the
entire NMR spectra of SOC from corresponding MIR spectra using partial least-squares regression (PLSR) in an
R environment. We developed a multi-response MIR–PLSR prediction model by regressing corresponding NMR
and MIR spectra of 99 HF-treated b50 μm fractions of soils using the pls package. The model was validated
using (set-aside) test sets in fourmodel iterations. Themodel provided accurate predictions of the entire average
NMR spectra. Average Euclidean distance values between spectra in the training set were at least 3.5 fold greater
than those between average reference and predicted NMR spectra, indicating that prediction errors were small
relative to between-soil variation. Our approach accurately predicted intricate NMR spectra, demonstrating
new potential for routine analysis of complex SOC chemistry.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The large quantity of organic carbon stored in soil (Trumbore et al.,
1996) and the strong coupling of SOC to atmospheric CO2 mean that
SOC is extremely important to support life on earth. Conversion of
natural ecosystems to cropping lands has resulted in up to 75% reduc-
tions in SOC stocks (Lal, 2004). This has been estimated as a loss of
78 ± 12 Pg of carbon from soils to the atmosphere at a global scale
(Lal et al., 2004). Extensive release of carbon from soils has adversely
affected soil and water quality and sustainable food production and
has been linked to worsening air quality and global warming (Lal,
2004). In routine soil tests, SOC is usually reported only in terms of its
total gravimetric content (g C/g soil) or volumetric stock (Mg C/ha to a
specific depth). However, since SOC is a complex mixture of diverse
organic molecular structures (Baldock and Broos, 2012; Kogel-Knabner,
2002), quantification of total SOC alone can only ever provide a simplified
view of the complex processes controlling its accumulation or loss.

It is acknowledged that the chemical composition of SOC affects a
range of soil physical, chemical and biological properties, and especially
its susceptibility to microbial mineralisation, and thereby affects the

properties of an entire ecosystem (Baldock and Skjemstad, 1999).
Moreover, the variability of organic carbon chemistry between soils
has been linked to their potential for carbon sequestration (Krull et al.,
2006; Singh et al., 2009), and to the sorption of dissolved organic carbon
(Kaiser et al., 2000) and pesticides (Ahmad et al., 2001; Kile et al., 1999)
onto soil particles. Therefore, understanding the nature and changes of
SOC chemical composition provides us with valuable insights into the
dynamics of soil carbon, and into the health and productivity of soils.

Currently, 13C NMR spectroscopy is considered to be the most reli-
able technique to determine the chemistry of SOC (Simpson et al.,
2011). However, the instrumentation is expensive to purchase and to
run, and given that the concentration of organic carbon in mineral
soils is usually b50 g C/kg soil, single samples typically require 5 h or
more of instrument time. As such, the use of NMR spectroscopy to char-
acterise SOC chemistry is far from routine, and currently beyond the
reach of many studies. Diffuse reflectance mid-infrared (MIR) spectros-
copy offers an attractive alternative because it is a high-throughput,
cost-effective and easy-to-use technique that can quantify the nature
of all chemical bonds present in a sample of soil. The downside of MIR
analysis of mineral soils is that, in contrast to NMR analysis, chromo-
phores for different organic structures are complex, overlap with each
other, and with signals derived from mineral soil components and
may represent only a small component of the total MIR signal. Thus,
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the challenge withMIR analysis is one of spectral interpretation, in par-
ticular to selectively identify and quantify signals derived from organic
carbon against a background dominated by signals derived from soil
mineral components.

Through the developments of multivariate regression methods
(Haaland and Thomas, 1988), infrared (IR) spectroscopy has been
used to quantitatively predict a variety of soil chemical parameters
(Janik et al., 1998) including SOC concentration (Forouzangohar et al.,
2009; Zimmermann et al., 2007), its biochemical components (Cecillon
et al., 2012), and NMR integrals, i.e. the area under an NMR peak
(Leifeld, 2006; Terhoeven-Urselmans et al., 2006). In this context, multi-
variate calibrations are developed between IR spectra and the reference
soil property of interest. The IR calibration methods utilize multivariate
regressions to reduce and to harness the complexity of IR data and to
provide predictions. In a previous study (Forouzangohar et al., 2013),
using two-dimensional heterospectral correlation analysis, we dem-
onstrated how major NMR spectral peaks of SOC could be cross-
correlatedwith the correspondingMIR peaks. Accordingly, we hypothe-
sized that MIR spectra coupled with partial least-squares regression
(PLSR) could be used to produce a prediction of NMR spectra of SOC.
Here, we describe the development and validation of such an approach
in an R environment (R Core Team, 2013) using the pls package (Mevik
and Wehrens, 2007), and demonstrate its utility to reliably predict the
entire NMR spectra, and to thus enhance capability for routine analysis
of complex SOC chemistry.

2. Material and methods

2.1. Soils

The samples used in this studywere fine fractions (≤50 μm) isolated
from 99 soils included in the Australian Soil Carbon Research Program
(Baldock et al., 2013a). The ≤50 μm fraction was isolated as described
by Baldock et al. (2013b). Briefly, the soils were dispersed and wet
sieved to ≤50 μm with the soil material passing through the sieve
being frozen, lyophilised and treated with 2% hydrofluoric acid (HF) ac-
cording to the methodology of Skjemstad et al. (1994).

2.2. Solid-state 13C nuclear magnetic resonance spectroscopy

Solid state 13C cross polarisation (CP) NMR spectra were acquired
withmagic angle spinning (MAS) on a Bruker 200 Avance spectrometer
equipped with a 4.7 T wide-bore superconducting magnet operating at
a 13C resonant frequency of 50.33 MHz. Weighed samples (100–
600mg)with known carbon contents were packed into 7mmdiameter
zirconia rotors with Kel-F end caps and spun at 5 kHz. A standard cross
polarisation pulse sequence using a 3.2 μs, 195 W, 90° pulse, a contact
time of 1 ms and a recycle delay of 1 s was applied to all samples. Be-
tween 10,000 and 30,000 scans were collected for each sample with
more scans collected for samples with lower carbon content so as to
limit variation in signal-to-noise ratios among samples. Chemical shift
was calibrated to the methyl resonance of hexamethylbenzene at
17.36 ppm and a 50 Hz Lorentzian line broadening was applied to all
spectra. Bruker TopSpin 3.2 software was used to derive absolute signal
intensities for all samples and for an empty rotor. The signal obtained
from the empty rotor was subtracted from all spectra.

2.3. Mid-infrared spectroscopy

Diffuse reflectance MIR spectra were acquired using a Nicolet 6700
FTIR spectrometer (Thermo Fisher Scientific Inc., MA, USA) equipped
with a KBr beam-splitter, a DTGS detector and a Pike AutoDiff-
Automated diffuse reflectance accessory (Pike Technologies, WI, USA).
Approximately 100 mg of ground, air-dried sample was placed into
9 mm stainless steel auto sampler cups and the surfaces levelled. The
samples were loaded onto a 60-sample automated wheel with a silicon

carbide background disk located in the centre. Spectra were acquired
over 8000–400 cm−1 with a resolution of 8 cm−1. In order to quantify
and correct the background signal intensity, 240 scans were applied
on a silicon carbide disk prior to analysing each set of 60 soil samples.
A total of 60 scans was acquired and averaged to produce a reflectance
spectrum for each individual soil sample. Omnic software (Version 8.0)
was used to convert the acquired reflectance spectra into absorbance
spectra (log transform of the inverse of reflectance).

2.4. Spectral data pretreatment

The noise in NMR and MIR spectra of HF-treated soils was reduced
using principal component analysis (PCA) as proposed and described in
detail by Jung (2003). In brief, PCA was performed separately on the
NMR and MIR datasets to identify the spectral principal components
(PCs) within each set of data. Then the spectra were reconstructed using
thePCs. Thisnoise reductionmethodhas been shown toeffectively and ra-
tionally reduce the noise in spectral data (Jung, 2003). GRAMS/AI software
(Thermo Galactic, Thermo Fisher Scientific, Waltham, MA) was used for
PCA. Baseline correctionwas implemented for bothNMR andMIR spectra.

2.5. Creating datasets for R computations

NMRandMIR spectral datawere saved in separate commadelimited
(*.csv) datasheets to be used in R calculationswithmatrix or data frame
structures. In the datasheets, each row corresponded to a single NMR or
MIR spectrum, and each column corresponded to an NMR or MIR spec-
tral variable. The first row was a header holding the NMR or MIR spec-
tral variable labels. The first column contained the row (i.e. sample)
names under id in the first cell.

2.6. Fitting a PLSR multi-response calibration model in R

The complete R code is described in detail in the Appendices, and
here we provide a brief description. The matrices of corresponding
NMR and MIR spectra were regressed, and a multi-response prediction
model was fit using the pls function. Calibrations were developed using
leave-one-out (LOO) cross-validation (Arlot and Celisse, 2010) to deter-
mine the optimal number of PLSR factors required for the predictive
model. Specifically, the following function was used to develop the cal-
ibration model, here called MIR–PLSR,

N MIR–PLSRb–plsr( NMR ~ MIR, ncomp = 10,data = spectra.

train, validation = “LOO”)

This functionfitted amulti-response PLSRmodelwith 10 components.
The data argument introduces the dataset (here called spectra.train)
to the function. The spectra.train dataset (n=99) had a data frame
structure in R, consisting of n rows (where n is the number of spectra in
the dataset) and of two variables, each being a matrix, of NMR and MIR
spectra. The left-hand side of the formula NMR ~ MIR is the matrix of
response variables (i.e. NMR spectra) and the right-hand side is the
matrix of predictor variables (i.e. MIR spectra). We then used the
resultingmodel to predict theNMR spectra from the acquiredMIR spec-
tra using the predict function, as follows:

N predict(MIR–PLSR, ncomp = 6, newdata = spectra.test)

The newdata argument introduces the MIR spectral data acquired for
the unknown soil samples to the function. The ncomp argument defines
the number of PLSR factors to be used by the model to make predictions.

3. Results and discussion

Being able to rapidly and inexpensively obtain NMR-derived infor-
mation related to the composition of SOC will markedly improve
current capacity to understand and monitor SOC dynamics including
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