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The multivariate character of seven dynamic soil properties from a national soil quality data set was explored to
determine if generalizations can be made about the status of the properties from land use and soil order. The
genoform–phenoform concept (where soil phenoforms arise from a genoform due to modification of dynamic
soil properties through specific land use history) was used to frame three hypotheses. Hypothesis one proposed
thatmanaged siteswere distinct fromnative sites. Thiswas supported bydiscriminant analysis and permutation-
almultivariate analysis of variance. Hypothesis two proposed that managed sites were clustered into statistically
significant distinct classes. This was supported by principal components fuzzy-c means clustering, with recogni-
tion of five to seven statistically significant clusters. Hypotheses three proposed that the clusters had functional
meaning. Thiswas supported by inspecting the clusters for rational relationships between landuse, soil order and
soil quality status as estimated by indicator mean values for each cluster. While organic status (e.g., soil C
and N) appeared to be the primary driver of clustering, other soil quality indicators (such as macroporosity)
were also important in differentiating the effects of land use and soil type on cluster patterns. The results indicate
that a taxonomy of phenoforms is possible, butwould require input of both inherent and dynamic soil properties.
Such a phenoform clustering approach would provide a more quantitative framework for defining intergrades
anduncertainty inmapping. Used in conjunctionwith spatial inherent-property-based databases, the phenoform
clustering approach could also be beneficial to assess soil natural capital and to predict susceptibility of specific
soils to land-use intensification.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soil survey, soil classification and land evaluation programmes have
largely focused on inherent soil properties that change very slowly over
time and are largely insensitive to land use. Conventional soil maps are
made with reference to these relatively stable soil properties. This focus
has traditionally been the domain of pedology. Soils are continually
evolving and transforming within anthropogenic timescales (Richter
et al., 2011), and the study of soil dynamic properties that are sensitive
to land use has generally been the domain of agronomy, soil fertility, soil
biology, soil quality, and soil ecology.

The state factor approach of Jenny (1941) firmly placed soil forma-
tion in an ecosystem context. A new emphasis in soil science is emerg-
ing with the recognition of soil as a crucial component of the earth's
natural capital, that highlights not only the ecological integrity of soils
but also the economic and social services that underpin the earth's eco-
systems and economies (Robinson et al., 2013; Dominati et al., 2010).
This growing area of research will force the integration of traditional
sub-disciplines of soil science because the quantification and valuation

of soil natural capital (Hewitt et al., 2012) and of soil services require
the integration of data on both inherent and dynamic soil properties.

Droogers and Bouma (1997) have provided a useful conceptual
framework to integrate inherent and dynamic soil properties that may
bridge this gap. Borrowing from plant and animal ecology they coined
the term ‘genoform’ for soil formed under native vegetation and
‘phenoform’ for the equivalent soil with similar inherent properties
but with dynamic properties modified by the impacts of a specific
land-use history. McBratney et al. (2014), discuss the genoform/
phenoform concept in the context of soil capability and condition and
suggest that the genoform represents a reference state that encom-
passes the inherent capability of the soil and condition under a specific
long-term circumstance (e.g. natural vegetation). The phenoform re-
flects the condition due to specific management, but they also note
that in a soil that passes a critical threshold, a phenoform may also be-
come a new reference state.

Soil classifications and spatial soil databases generally exclude dy-
namic soil properties and are limited in their ability to support realistic
spatial analyses of land use issues involving dynamic soil properties. Al-
though there has been some movement toward linking knowledge of
dynamic soil characteristics into soil survey, soil classification and land
evaluation (see for instance Pennock and Veldkamp, 2006), progress
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has been slow. In contrast, soil quality is a subdiscipline that has focused
almost exclusively on the variation of dynamic soil properties where in-
dicators are deliberately chosen to represent key dynamic responses of
soil natural capital to the impacts of human land use management. The
soil quality literature provides many examples of relationships of indi-
vidual soil quality indicators with land use and soil type (for example,
Brejda et al., 2000; Sparling and Schipper, 2004; Cotching and Kidd,
2010). Sparling and Schipper (2002) examined an initial New Zealand
soil quality data set using principal components.

Here,we examine inmore detail themultivariate clustering of an ex-
panded New Zealand soil quality data set that contains only dynamic
soil properties. Cluster centroid classification has been proposed for
soil classification systems of inherent soil properties (see McBratney
and De Gruijter (1992) and Minasny et al. (2010)) and would also
allow development of classifications that incorporate both dynamic
and inherent soil properties — a feature particularly useful in the char-
acterisation of soil natural capital. The motivation for our research was
to utilise the genoform–phenoform concept to indicate where land-
use change may significantly affect soil quality indicators for specific
soils or groups of soils.

This paper considers three hypotheses:

1. Managed sites (sites that are managed for a particular purpose and/
or have had significant anthropogenic alteration) are statistically dis-
tinct from sites under native vegetation

2. Managed sites are clustered into statistically distinct classes of relat-
ed soil quality states

3. Clusters have functionalmeaning as assessed by relationships to land
use and soil type and their impress on soil quality states.

2. Material and methods

2.1. Soil quality database description

The New Zealand soil quality data set for regional-scale monitoring
currently holds data for in excess of 700 sites, over 12 geographical
regions within the country. The core set of soil quality indicators
(pH, total C, total N, anaerobicallymineralizable N, Olsen P, bulk density,
and macroporosity) and their symbols, are listed in Table 1. There are
very few soils containing carbonates in New Zealand (and of those
that do, carbonates do not occur in the A horizon), so that total C is
equivalent to organic C.

Schipper and Sparling (2000) and Sparling and Schipper (2002)
discussed the rationale for choice of these indicators, sampling strategy
and analytical methods. Sampling sites were stratified by soil order
(Hewitt, 2010) and by land use. The land use categories were: cropping,
horticulture, dairy pasture, dry stockpasture (sheep and beef cattle), ex-
otic forestry (predominantly Pinus radiata), native forest, and native
tussock grassland. Sparling et al. (2004) found that land use and soil
order together explained 50–68% of total variance for the different indi-
cators (12–49% for land use alone and 21–39% for soil type alone).
Cotching and Kidd (2010) also reported that land use and soil
order explained a high proportion of the total variance, for 6 indicators

(4 of which are common to the New Zealand set of indicators) from a
Tasmanian data set of 271 sites.

Principal component analysis by Sparling and Schipper (2002) relat-
ed the variance of the seven indicators to acidity (pH), organic resources
(total C + N, anaerobically mineralizable N), physical resources (bulk
density and macroporosity) and fertility (Olsen P). Consequently the
SINDI (Soil INDIcators) system for interpretation of soil quality indicator
values was designed. The SINDI system used a panel of soil scientists to
develop target ranges for the indicators by soil type and land use to es-
tablish soil quality ratings for the different indicators (Sparling et al.,
2003). The development and operation of the monitoring system were
described by Lilburne et al. (2002), Sparling et al. (2004), Sparling and
Schipper (2004), and Lilburne et al. (2004). Giltrap and Hewitt (2004)
described the short range variability of soil quality indicators which de-
clined in a sequence: native forest N exotic forest N pasture N cropping.

2.2. Soil sampling

Sampling strategy and protocols, and lab analysis methods were de-
scribed by Sparling and Schipper (2002). In brief, at each site approxi-
mately 25 soil cores (25 mm diameter to a depth of 10 cm) were
collected along a 50-m transect and bulked for chemical analysis.
Three soil cores (100mmdiameter and 75mmdepth)were also collect-
ed equidistant along the transect for soil physical analyses. The sites
were sampled between 1978 and 2009. If a site was revisited for repeat
sampling over time, only data from themost recent sampling date were
used.

Land-use history is not available at most of the sites. An assumption
in this study is that sites have been predominantly under the same land
use for sufficient time that the observed soil quality reflects the effects of
impacts from the current land use at time of sampling.

2.3. Data analysis

The soil quality data set was analysed in R (R Development Core
Team, 2013) unless otherwise noted. The soil C:N ratio was included
alongwith the seven indicators previously listed above as it is easily de-
rived from the existing data, and generally much less correlated to total
C than is total N. Previous records for a particular site were excluded, as
noted before, if they had been resampled at a later date, and records
were only retained for analysis if all seven indicators were available.
This resulted in a total of 720 records in the final data set. Initially the
data was explored without considering relationships to land use and
soil factors. Some of the distributions of the different indicators were
strongly skewed to the right, in part because the values are all non-
negative. The set of soil quality indicators analysed, abbreviations for
the indicators, and any transformations before analysis are shown in
Table 1.

We anticipated a degree of correlation between some of the soil
quality indicators (such as C and N), so principal components (PC) anal-
ysis was used to produce independent components, and provide some
opportunity to reduce the dimensionality of the data set and thus to
re-examine the initial findings of Sparling and Schipper (2002). In
order to investigate whether the soil records exhibited natural group-
ing, we used fuzzy c-means clustering (Bezdek, 1981), which is very
similar to the k-means clustering algorithm (Hastie et al., 2009), but
has better convergence properties (to clarify further, the algorithms
for fuzzy c-means clustering and fuzzy k-means clustering are identi-
cal). In fuzzy clustering, each point has a degree of membership of be-
longing to all clusters (as in fuzzy logic), so that points at the edge of a
cluster will have a lower degree of membership when compared with
points in the centre of a cluster. No differential weighting of indicators
was used so that each individual indicator was considered equal to all
others.

The fuzzy c-means method requires an initial estimate of the num-
ber of clusters, begins with a random assignment of points to clusters,

Table 1
Soil indicators and their transformations used for analysis.

Indicator Symbol Transformation

pH pH pH
Total carbon TC TC
Total nitrogen TN TN
C:N ratio CN Log(CN)
Olsen P OLSEN Log(OLSEN)
Anaerobically mineralizable N AMN Sqrt(AMN)
Bulk density BD BD
Macroporosity MP Sqrt(MP)
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