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Accurate assessment of soil carbon fractionswould provide valuable contributions towardsmonitoring in ecolog-
ical observatories, assessment of disturbance impacts, global climate and land use change. The majority of che-
mometric modelling studies have focused on measuring only total soil carbon (C), with only a few evaluating
individual soil C pools. Analysis of pools allows for a more detailed picture of ecosystem processes, specifically
decomposition and accretion of C in soils. This study evaluated the potential of the visible near infrared
(VNIR), mid infrared (MIR) and a combined VNIR–MIR spectral region to estimate and predict soil C fractions.
Partial least squares regression (PLSR) and random forest (RF) ensemble tree regressionmodelswere used to es-
timate four different soil C fractions. The soil C fractions analysed included total — (TC), organic — (SOC), recal-
citrant — (RC) and hydrolysable carbon (HC). The sample set contained 1014 soil samples collected across the
state of Florida, USA. Laboratory analysis revealed the wide range of total and organic C values, from 1 to
523 g·kg−1, with only about 10% of the samples containing inorganic C which was therefore omitted from the
study. Both PLSR and RF modelling were shown to be effective in modelling all soil C fractions, with as much
as 94–96% of the variation in the TC, SOC and RC pools, and 86% of HC being explained by the models. Although
both PLSR and RFmodels were successful inmodelling C fractions, RFmodels appear to target the physical prop-
erties linked to the property being analysed, and may therefore be the better modelling method to use when
generalising to new areas. This study demonstrates that diffuse reflectance spectroscopy is an effective method
for non-destructive analysis of soil C fractions, and through the use of RF modelling a spectral range between
2000 and 6000 nm should suffice to model these soil C fractions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soil carbon (C) sequestration has been targeted by the Intergovern-
mental Panel on Climate Change (IPCC) as one of the main means to
mitigate rise in atmospheric C levels (Bellon-Maurel and McBratney,
2011; Metz et al., 2007). Total soil C can be separated into different
soil C fractions based on their turnover rates. Whether the soil is a
source or a sink of C depends on the balance between the C recalcitrance

(chemical stability of the soils) and evolution of C cycling processes (i.e.
the impact of decomposition, accretion, etc.). There has been much de-
bate about the impact of climatewarmingon soil C (Bellamyet al., 2005;
Craine and Gelderman, 2011; Davidson and Janssens, 2006; Fierer et al.,
2005; Thornley and Cannell, 2001; Trumbore et al., 1996) and the un-
certainty involved in monitoring soil C across large regions is still sub-
stantial (Grunwald et al., 2011). There is in addition a need to assess
the impact of land use shifts and disturbances (e.g., wildfire) on soils;
however a rapid, robust and effective means to monitor changes in
soil C at regional, continental and global scales is lacking. As a response
to these needs research on spectral-based methods has exploded over
the last decade and introduced new avenues including soil C models in-
formed by proximal sensors, such as visible near infrared (VNIR) and
mid infrared (MIR) diffuse reflectance spectroscopy (DRS). Importantly,
these methods have been shown to yield comparable results to tradi-
tional time-consuming and more costly laboratory methods (Bellon-
Maurel and McBratney, 2011).

Diffuse reflectance spectroscopy in the VNIR spectral range has been
used widely to characterize soil organic carbon (SOC) and soil total
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carbon (TC) (Brown, 2007; Ge et al., 2011; Sarkhot et al., 2011;
Shepherd and Walsh, 2002; Udelhoven et al., 2003; Vasques et al.,
2008, 2009, 2010). Soil OC models derived from VNIR spectra differed
widely with studies covering 8.1–19.8 g kg−1 (Viscarra Rossel et al.,
2006), 6.1–33.0 g kg−1 (Reeves et al., 2002), 2.3–55.8 g kg−1

(Shepherd and Walsh, 2002), 1.3–285.8 g kg−1 (Chang et al., 2001),
and 0.1–536.8 g kg−1 (Brown et al., 2006) soil C suggesting a more uni-
versal applicability of models the wider their C content range. Mid-
infrared spectroscopy has been demonstrated to predict SOC and TC,
often with better accuracy than VNIR derived models. For example,
McDowell et al. (2012a) predicted TC from VNIR and MIR spectral
data on Hawaiian soils that are highly diverse and complex in terms of
their mineralogy and soil texture. In the study by McDowell et al.
(2012b) it was demonstrated that TC predictions derived from VNIR
and from MIR spectra yielded robust results with R2 values of 0.94 or
greater, root mean square prediction error (RMSE) values ranged from
2.28%–3.08%, and residual prediction deviation (RPD) of 3.38 or more.
In their study the models derived from VNIR and MIR spectra were
contrasted, with both spectral regions not being combined to form sin-
gle spectra. Other studies, such as by McCarty et al. (2002), Reeves et al.
(2006), and Reeves (2010) have demonstrated the success of MIR to
predict soil C.

The majority of these studies have focused on measuring only total
soil C, with only a few evaluating individual soil C pools. Yet these
pools allow a more detailed picture of ecosystem processes, specifically
decomposition and accretion of C in soils. Thus, pools (i.e., chemically
extracted soil C fractions) have unique capabilities to reflect the evolu-
tion of soil C as a result of various imposed stressors (e.g., climate and
land use change). According to Belay-Tedla et al. (2009) C and nitrogen
(N) fluxes are largely controlled by the small but highly bio-reactive, la-
bile pools of these elements in terrestrial soils, while long-term C and N
storage is determined by the long-lived recalcitrant fractions. In their
study they found that recalcitrant and total C and N contents were not
significantly affected by warming, however, labile and microbial bio-
mass C fractions showed significant interactions with warming.

Labile C, although often a small fraction of SOC, significantly affects
heterotrophic respiration at short timescales because of its rapid de-
composition (Gu et al., 2004). In a study by Bradford et al. (2007) it
was shown that there are significant interactive effectswhen the forma-
tion and decomposition responses of different soil C fractions are con-
sidered. Hence, the total amount of soil C stocks was dependent on
the rate of labile soil C, N and phosphorus (P) inputs to soils. Labile
soil C has also been shown to respond to effects in management
(Biederbeck et al., 1994). Proximal sensing technology has the potential
to infer not only on total soil C content, but also on soil C fractions. How-
ever, this research is still in its infancy. For example, Vasques et al.
(2009) used VNIR spectra to estimate various soil C fractions andminer-
alizable C in a subtropical region dominated by sand-rich soils. Also
Sarkhot et al. (2011) estimated SOC, inorganic C, and labile C in a
small floodplain area on clay-rich soils in Texas. More work needs to
still be done in the field of chemometric modelling of C fractions
encompassing diverse soil types to determine whether spectral model-
ling would be a robust method for predicting of soil C fractions.

Recently, Bellon-Maurel and McBratney (2011) critically reviewed
both NIR and MIR spectroscopic techniques for soil C studies. Their re-
view highlighted that MIR spectroscopy yielded better (10–40% im-
provement) models than models developed from NIR spectra. Of the
studies reviewed none of them compared NIR and MIR spectroscopy
on the same soil samples indicating a critical research gap which is ad-
dressed in this study. From the studies they reviewed, they applied
either multiple linear regression (MLR) or partial least squares regres-
sion (PLSR) for their chemometric models. The simpler MLR models
were shown to perform comparably to the PLSR models; however,
both methods showed shortcomings in terms of wavelengths selected.
Judicious selection of wavelengths is imperative when applying a
model to new areas where the soil C range might be similar, but the

soil characteristics differ from those where the model was built. Wave-
length selection is likely to be an important contributor to increasing the
bias in results when the validation dataset is acquired from an “out of
field” source. Both methods were found to be biased when applied to
new soil samples with different compositions. Recently, the use of
non-linear modelling methods, such as ensemble tree regression
modelling, has been shown to improve model performances in terms
of output error metrics (Vasques et al., 2009, 2010; Viscarra Rossel
and Behrens, 2010; Vohland et al., 2011).

The focus of this study was to determine the potential of both the
VNIR and MIR spectral regions to estimate soil C fractions. Partial least
squares regression (PLSR) and random forest (RF) regression models
were derived to estimate soil C fractions. Thesemethodswere evaluated
firstly to determine which method could best predict soil C fractions,
and secondly it was determined if either method produced output
that is attributed to the physics of soil C properties. We assume that if
the most important model factors (i.e., the importance factors for RF
and loadings for PLSR) can be attributed to physical soil C properties
the models would be robust if generalised and applied to other areas
in the future. The soil C fractions focussed on in this study include
total C (TC), soil organic C (SOC), recalcitrant C (RC), and hydrolysable
C (HC). VNIR and MIR chemometric models were derived from a wide
selection of soil samples collected over the state of Florida, USA. The
study objectives were to determine the predictive capabilities of the
VNIR, MIR and combined VNIR–MIR spectral datasets for predicting
soil C fractions (TC, SOC, RC, and HC). Within this overall objective we
evaluated the following sub-objectives:

1. Determine which spectral region performs best.

2. Evaluate which modelling method (PLSR or RF) performs best based
on validation datasets.

3. Identify if there is a best method in terms of data preparation for C
fraction chemometric analysis.

2. Methods

2.1. Field sampling

A total of 1014 sample sites were located over the state of Florida
using a stratified random sampling design. The strata were defined
based upon soil suborder data obtained from the Soil Data Mart — Soil
Survey Geographic Database (SSURGO) (Natural Resources Conserva-
tion Service — http://soildatamart.nrcs.usda.gov/), and a reclassified
land use/cover map derived from the 2003 Florida Vegetation and
Land Cover Data map prepared by the Florida Fish andWildlife Conser-
vation Commission, Tallahassee, Florida. Dominant soils in the state are
Spodosols (32%), Entisols (22%), Ultisols (19%), Alfisols (13%), Histosols
(11%), and Mollisols and Inceptisols together occupy b3% of the state
(Vasques et al., 2010).

The soil samples were collected over a period of 1.25 years between
2008 and 2009. Sample sites were located using a differential global po-
sitioning system. At each site four 20 × 5.8 cm surface soil cores were
collected fromwithin a 2mdiameter area. These four coreswere bulked
and cooled in the field and then transported and processed in the lab. In
addition to the sampled soils, datawas collected of the soil suborder and
land use practice found at each site.

2.2. Laboratory methods

The bulk samples were air-dried and sieved to retrieve the fine earth
fraction (b2mm), thoroughlymixed and then stored. Subsamples were
taken from these dried, sieved andmixed bulk samples for the laborato-
ry analysis. A portion of these subsamples were ball milled for use in
some of the laboratory procedures outlined below.
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