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Spatial predictions of soil properties are needed for various purposes. However, the costs associated with
soil sampling and laboratory analysis are substantial. One way to improve efficiencies is to combine mea-
surement of soil properties with collection of cheaper-to-measure ancillary data. There are two possible ap-
proaches. The first is the formation of classes from ancillary data. A second is the use of a simple predictive
linear model of the target soil property on the ancillary variables. Here, results are presented and compared
where proximally sensed gamma-ray (<y-ray) spectrometry and electromagnetic induction (EMI) data are
used to predict the variation in topsoil properties (e.g. clay content and pH). In the first instance, the prox-
imal data is numerically clustered using a fuzzy k-means (FKM) clustering algorithm, to identify contiguous
classes. The resultant digital soil maps (i.e. k = 2-10 classes) are consistent with a soil series map generated
using traditional soil profile description, classification and mapping methods at a highly variable site near
the township of Shelford, Nottinghamshire UK. In terms of prediction, the calculated expected value of
mean squared prediction error (i.e. 0%, ¢) indicated that values of k = 7 and 8 were ideal for predicting
clay and pH. Secondly, a linear mixed model (LMM) is fitted in which the proximal data are fixed effects
but the residuals are treated as a combination of a spatially correlated random effect and an independent
and identically distributed error. In terms of prediction, the expected value of the mean squared prediction
error from a regression (olp,R) suggested that the regression models were able to predict clay content, bet-
ter than FKM clustering. The reverse was true with respect to pH, however. We conclude that both methods
have merit. In the case of the clustering the approach is able to account for soil properties which have non-
linearity's with the ancillary data (i.e. pH), whereas the LMM approach is best when there is a strong linear
relationship (i.e. clay).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Oliver (1992) that approximately 100 sample points are required
to estimate a spatial statistical model. One way to improve soil

Spatial predictions of soil properties are needed for various pur-
poses including agriculture and engineering as well as scientific dis-
ciplines such as soil science, ecology and hydrology (Goovaerts,
1997). For example, maps of clay content can be used to ascertain
land-use potential, whilst maps of soil pH can indicate lime
requirement to counteract soil acidity, or potential nutrient avail-
ability. However, the costs associated with soil sampling and labora-
tory analysis are substantial, and spatial prediction requires
considerable sample effort given the observation by Webster and
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sampling efficiency is to combine direct measurement of soil proper-
ties with collection of cheaper-to-measure ancillary data. Ancillary
data can be used to improve precision with which properties are
predicted from relatively few direct observations. Hence the growing
interest in proximal geophysical sensing methods (Robinson et al.,
2008) which have been applied to a range of problems including,
soil salinity assessment (Lesch et al., 2005), prediction of depth
to clay (Jung et al., 2006), soil moisture determination (Robinson
et al., 2012), determination of soil cation exchange capacity
(Triantafilis et al, 2009a) and deep drainage estimation
(Woodforth et al., 2012).

In this paper we consider two possible approaches. The first is to
use ancillary data to form a set of land classes by a numerical
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clustering algorithm. The mean value of the soil property in each
class, estimated from samples within each class, can then be used
for prediction. This approach could be useful because it makes no as-
sumptions about the nature of the relationship between the soil
property and the ancillary variables and because precise estimates
of class means can be obtained from bulk samples formed by aggre-
gating individual sample cores within the class thereby reducing an-
alytical costs. One practical question for the implementation of this
approach is how many classes should be defined. This is usually ad-
dressed by considering the distribution of the ancillary variables
used to form the classes, looking for evidence of compact structures
in feature space (e.g. Triantafilis et al., 2009b). The rationale of this
approach is that the classes so-identified reflect natural clusters in
the feature space rather than an arbitrary partition, and so should re-
flect underlying sources of variation in the soil. Another approach
(not used in this context to date) is prediction-based. As we consider
more and smaller classes the within-class variance of the soil proper-
ties we wish to predict will, in general diminish, but the prediction
error does not necessarily because the class mean is estimated with
less precision as a fixed sample effort is divided between more clas-
ses (Huang et al., 2014).

A second and more commonly-used approach is linear predictive
modeling, essentially a multiple regression of the target soil property
on the ancillary variables. Ideally this is done using data obtained
from a probability sample so residuals can be treated as indepen-
dent. The model is then used to form a prediction of the target prop-
erty at a site where only ancillary data is known. Often data are not
collected according to a probability design, in which case a linear
mixed model (LMM) fitted in which covariates are fixed effects but
the residuals are treated as a combination of a spatially correlated

random effect and an independent and identically distributed error
(Lark et al., 2006). The prediction of the soil property at an
unsampled site is then a combination of a regression-type prediction
from proximally-sensed covariates and a kriging-type prediction of
residuals from the fixed effects model at sampled sites (e.g. Gooley
et al, 2014).

In this paper we consider both approaches, showing how the
question ‘how many classes?’ can be addressed in terms of the un-
certainty of resulting predictions, and compared with the linear
mixed model. We illustrate this with a case study in which y-ray
spectrometry and the apparent electrical conductivity using an
electromagnetic (EM) induction instrument were measured as an-
cillary data across two fields located east of the village of Shelford
near Nottingham in the UK. We formed classes from the ancillary
data using fuzzy k-means (FKM) analysis. We then analyze data
on soil properties along with the classes formed from the ancillary
data and the ancillary data themselves. We show how the precision
of class means as predictors of soil properties (for fixed total sample
effort) varies with the number of classes and compare this criterion
for the number of classes with measures based on the distribution
of the ancillary data. We also compare these measures of precision
with comparable ones for direct prediction from the ancillary data
by a linear model.

2. Materials and methods
2.1. Study area

The study fields (Fig. 1) are located east of the village of
Shelford, which lies approximately 4 km east of Nottingham in
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Fig. 1. Location of study area east of Nottingham and River Trent and the soil series map.
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